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SUITES RÉCURRENTES

A) La convergence

1) Il s'agit de trouver les réels a ⩾ 0 tels que a = 1
2 (
√
a+

√
a), soit a =

√
a,

soit a = 0 ou a = 1.

2)a) Par l'absurde, si u0 = 0 et u1 = 0 alors d'après la relation de récurrence
un = 0 pour tout n ⩾ 0 soit : U = (0) ce qui est contraire à l'hypothèse.

Donc u0 > 0 ou u1 > 0. D'après (R), si l'un de un−2 et un−1 est strictement
positif il en est de même de un. Donc un > 0 pour tout n ⩾ 2.

2)b) Raisonnons par l'absurde. Supposons l'existence de n ⩾ 0 tel que
(un, un+1) = (1, 1). On a un+2 = 1

2 (
√
1 +

√
1) = 1. Par récurrence on obtient

ainsi ui = 1 pour tout i > n. Si n ⩾ 1, on a 1 = 1
2 (un−1 + 1) donc un−1 = 1.

Par récurrence descendante on obtient ui = 1 pour tout i < n. Ainsi U = (1) ce
qui est contraire à l'hypothèse.

3)a) Si vn = 0 alors un = 0 ou un+1 = 0 donc U = (0) ce qui est contraire
à l'hypothèse.

3)b) Puisque un+1 ⩾ vn et un ⩾ vn, on a un+2 ⩾ 1
2 (2

√
vn) =

√
vn, et

puisque vn ⩽ 1 on a
√
vn ⩾ vn. Donc un+2 ⩾ vn, et comme 1 ⩾ vn et un+1 ⩾ vn,

on a : vn+1 ⩾ vn.
Pour wn, c'est le même raisonnement avec des ⩽ au lieu de ⩾. Puisque

un+1 ⩽ wn et un ⩽ wn, on a un+2 ⩽
√
wn ⩽ wn, car wn ⩾ 1. Donc un+2 ⩽ wn,

et comme 1 ⩽ wn et un+1 ⩽ wn, on a : wn+1 ⩽ wn.

3)c) On a vu : un+2 ⩾
√
vn, de même un+3 ⩾

√
vn+1 et a fortiori un+3 ⩾√

vn et comme 1 ⩾
√
vn on a : vn+2 ⩾

√
vn.

De même on a vu : un+2 ⩽
√
wn, et un+3 ⩽

√
wn+1 ⩽

√
wn et comme

1 ⩽
√
wn on a : wn+2 ⩾

√
wn.

3d)) La suite (vn) est strictement positive pour n ⩾ 2, croissante et majorée
par 1. Elle tend donc vers une limite ℓ′ véri�ant : 0 < ℓ′ ⩽ 1. Comme vn+2 ⩾√
vn, on obtient par passage à la limite : ℓ′ ⩾

√
ℓ′ donc, puisque ℓ′ > 0, ℓ′ ⩾ 1.

Finalement ℓ′ = 1.
De même la suite (wn) est décroissante et minorée par 1. Elle tend donc

vers une limite ℓ′′ ⩾ 1 véri�ant : ℓ′ ⩽ 1. Comme wn+2 ⩽
√
wn, on obtient par

passage à la limite : ℓ′′ ⩾
√
ℓ′′ donc, puisque ℓ′ > 0, ℓ′′ ⩾ 1. Finalement ℓ′′ = 1.
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On a vn ⩽ un ⩽ wn donc par encadrement (un) tend vers 1.

*****

B) Les variations de (un)

1) On a : up+2−1 = 1
2 (
√
up+1−1)+ 1

2 (
√
up−1) ⩾ 0. D'après A2b), puisque

U n'est pas constante, on a : (up, up+1) ̸= (1, 1) donc (
√
up+1−1)+(

√
up−1) > 0

et �nalement up+2 > 1.
Ainsi up+1 ⩾ 1 et up+2 > 1. Donc up+3 > 1.
On conclut par récurrence. Soit q ⩾ 3 ; supposons prouvés un > 1 pour

p + 2 ⩽ n ⩽ q ; alors comme uq−1 > 1 et uq > 1, on a uq+1 > 1. Ainsi un > 1
pour n ⩾ p+ 2.

2) Preuve similaire. On a : up+2 − 1 = 1
2 (
√
up+1 − 1) + 1

2 (
√
up − 1) ⩽ 0.

D'après A2b), on a : up+1− 1 < 0 ou up− 1 < 0 donc up+2 < 1. Par récurrence
un < 1 pour n ⩾ p+ 2.

3) Supposons d'abord q = 0.
Alors u0 ̸= 1 d'après A2b). Si u0 > 1 (resp. < 1) alors un > 1 (resp. < 1)

pour tout n ⩾ 2. Ainsi U véri�e ou bien (R+) ou bien (R-) pour la valeur 0.

On suppose maintenant q ⩾ 1.
On a uq−1 ̸= 1 d'après A2b). Si uq−1 > 1 (resp. < 1) alors un > 1 (resp.

< 1) pour tout n ⩾ q + 1.
Si q = 1 alors U véri�e ou bien (R+) ou bien (R-) pour la valeur 0 = q − 1.
Si q ⩾ 2 alors uq−2 < 1 (resp. > 1) car si uq−2 ⩾ 1 (resp. ⩽ 1) alors uq < 1

(resp. >1). Donc U véri�e ou bien (R+) ou bien (R-) pour la valeur p = q − 1.

S'il existe r tel que ur = 1 alors r < q car un ̸= 1 pour n > q, mais alors
uq ̸= 1 et c'est contradictoire donc q est le seul n tel que un = 1.

4) Par dé�nition p est le plus petit entier n tel que (un − 1)(un+1 − 1) ⩾ 0.
Donc (un − 1)(un+1 − 1) < 0 pour tout n ⩽ p− 1. On en déduit que le signe de
(u0 − 1)(up − 1) est (−1)p donc celui de u0 − 1 est (−1)p si U véri�e (R+) pour
la valeur p et (−1)p+1 si U véri�e (R-) pour la valeur p.

5) Il n'existe donc aucun n tel que (un − 1)(un+1 − 1) ⩾ 0. Donc (un −
1)(un+1 − 1) < 0 pour tout n. En particulier un ̸= 1 pour tout n.

*****

C) Existence des di�érents types de suites (un)

1) Par construction on a f0(t) = a, f1(t) = t, puis

fn(t) =
1

2

(√
fn−1(t) +

√
fn−2(t)

)
2



pour tout n ⩾ 2.
Les fonctions t 7→ a et t 7→ t sont continues. La fonction x 7→

√
x est continue.

Soit n ⩾ 2. Supposons acquise la continuité de fk pour tout k < n, ce qui est vrai
pour n = 2 ; alors fn−1 et fn−2 sont continues, puis fn = 1

2

(√
fn−1 +

√
fn−2

)
est continue. Par récurrence on prouve ainsi que fn est continue pour tout n ⩾ 1.

La fonction f1 : t 7→ t tend vers +∞ en +∞ il en est de même de f2 :
t 7→ 1

2 (
√
a +

√
t). Soit n ⩾ 3 ; supposons établi lim

t→+∞
fk pour tout k de 1 à

n − 1 ; alors fn = 1
2

(√
fn−1 +

√
fn−2

)
tend vers +∞ en +∞. Par récurrence

on prouve ainsi que fn tend vers +∞ en +∞ pour tout n ⩾ 1.
On prouve de même que puisque f1 et f2 sont strictement croissantes il en

est de même de fn pour tout n ⩾ 1.

2) Supposons t = 0. D'après A2) on a un < 1 pour tout n ⩾ 2 donc
fn(0) < 1 pour tout n ⩾ 2. D'après 1) fn réalise une bijection de [1,+∞[ sur
[fn(0),+∞[. Il existe donc un et un seul t tel que fn(t) = 1.

Puisque f1(t) = t il est clair que 1 est le seul t tel que f1(t) = 1. Donc t1 = 1.
On a 1 = 1

2 (
√
a+

√
t2) donc

t2 = (2−
√
a)2.

3) Supposons t = tq. Par construction uq = 1. D'après B3), U véri�e (R+)
ou (R-) pour la valeur q − 1.

Si q = 1 alors puisque u0 = a < 1, U est dans (R-) pour la valeur 0, donc
un < 1 si n > 1, puis tn > t1 = 1.

Si q ⩾ 2, d'après B4) puisque u0 − 1 < 0 et (un − 1)(un+1 − 1) < 0 pour
tout n ⩽ q − 2, uq−1 est du signe de (−1)q.

Si q est pair (resp. impair) alors uq−1 > 1 (resp. uq−1 < 1) donc U véri�e
(R+) (resp. (R-)) pour la valeur q − 1.

Soit un entier n > q. Donc un = fn(tq) > 1 = fn(tn) (resp. un = fn(tq) <
1 = fn(tn)) et comme fn croît strictement on a tn < tq (resp. tn > tq ) pour
tout n > q.

4) On a t2m−1 < t2m+1 < t2 donc la suite (t2m−1) est croissante et majorée ;
elle converge vers une limite τ−.

On a t2m > t2m+2 > t1 donc la suite (t2m−1 est décroissante et minorée ; elle
converge vers une limite τ+. Mais comme t2m−1 < t2m, on a τ− ⩽ τ+.

5) On a 0 < t1 = 1 < t3 < · · · < τ et +∞ > t2 > t4 > · · · > τ .
• Si 0 ⩽ t ⩽ t1 alors un ⩽ 1 pour tout n ⩾ 0 donc U véri�e (R-) pour la
valeur 0. Ainsi [0, t1] ⊂ I−(a, 0).

• Si t2m−1 < t ⩽ t2m+1 pour un certain m ⩾ 1, alors
f2m−1(t) > 1 ⩾ f2m+1(t) soit u2m−1 > 1 ⩾ u2m+1. De plus t2m > t2m+1

donc u2m < u2m+1 donc u2m < 1. Ainsi U véri�e (R-) pour la valeur 2m
soit ]t2m−1, t2m+1] ⊂ I−(a, 2m)].

• Si t ⩾ t2 alors un ⩾ 1 pour tout n ⩾ 1 tandis que u0 = a < 1, donc U
véri�e (R+) pour la valeur 1. Ainsi [t2,+∞[⊂ I+(a, 1).
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• Si t2m > t ⩾ t2m+2 pour un certain m ⩾ 1, alors u2m < 1 ⩽ u2m+2.
De plus t2m+1 < t2m+2 donc u2m+1 > u2m+2 donc u2m+1 > 1. Ainsi U
véri�e (R+) pour la valeur 2m+ 1 soit [t2m+2, t2m[⊂ I+(a, 2m+ 1)].

• Si t = τ alors U véri�e (S) et {τ} ⊂ J(a).

Les ensembles I−(a, 2m) pour m ∈ N, I+(a, 2m − 1) et J(a) sont deux à
deux disjoints d'après leurs dé�nitions.

Les intervalles [0, t1], ]t1, t3], . . . ; [t2,+∞[, [t4, t2[, [t6, t4[, . . . ; {τ}, consti-
tuent une partition de [0,+∞[. Les inclusions prouvées ci-dessus sont donc des
égalités.

*****

D) Une équation aux di�érences �nies

1) En multipliant par α−n−1 les deux membres de (E) on obtient (E').

On a par sommation : zn = z0 +
n−1∑
k=1

α−k−1yk,

puis : xn = x0α
n +

n−1∑
k=0

αn−k−1yk.

2) xn = αnx0 + αn−1
n−1∑
k=0

(β/α)k = αnx0 +
βn−αn

β−α .

3a) On a : |xn| ⩽ |αn||x0|+
n−1∑
k=0

|α|n−k−1|yk| ⩽ |αn||x0|+
n−1∑
k=0

|α|n−k−1C|β|k,

soit |xn| ⩽ |α|n||x0|+ C |β|n−|α|n
|β|−|α| .

Puis : |xn| ⩽ |β|n
(
|x0|+ C 1

|β|−|α|

)
, ce qui prouve bien que xn = O(|βn|.

3bi) On reprend le calcul de 3a). On a toujours |yn| ⩽ C|β|n pour n ⩽
N(ε)− 1 et de plus |yn| ⩽ ε|β|n pour n ⩾ N(ε).

Fixons n > N(ε).

On a : |xn| ⩽ |αn||x0|+ C
N(ε)−1∑
k=0

|α|n−k−1|β|k + ε
n−1∑

k=N(ε)

|α|n−k−1|β|k,

puis :
N(ε)−1∑
k=0

|α|n−k−1|β|k = |α|n−N(ε) |β|N(ε)−|α|N(ε)

|β|−|α| ⩽ |β|N(ε)−|α|N(ε)

|β|−|α| car

|α| < 1.

et :
n−1∑

k=N(ε)

|α|n−k−1|β|k ⩽
n−1∑
k=0

|α|n−k−1|β|k = |β|n−|α|n
|β|−|α| .

On en déduit l'inégalité voulue :

|xn| ⩽ |x0||αn|+ C |β|N(ε)−|α|N(ε)

|β|−|α| + ε |β|n−|α|n
|β|−|α| pour tout n > N(ε).

3bii) On a pour tout n > N(ε) :

|β|−n|xn| ⩽ |x0||α/β|−n + C|β|−n |β|N(ε)−|α|N(ε)

|β|−|α| + ε 1
|β|−|α| .

La limite quand n tend vers +∞ du second membre de l'inégalité est ε 1
|β|−|α| .
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Choisissons un réel K > 1
|β|−|α| .

Il existe N ′(ε) ⩾ N(ε) tel que |β|−n|xn| ⩽ Kε pour tout n ⩾ N ′(ε).
Finalement on a |β|−n|xn| ⩽ ε pour tout n ⩾ N ′(ε/K).
C'est une façon d'exprimer : xn = o(βn).

3c) On a yn = cβn + zn où zn = o(βn). Donc d'après les questions précé-
dentes on a xn = cαnx0+

βn−αn

β−α +o(βn). Puis β−nxn tend vers c
β−α . C'est dire

que xn ∼ c βn

β−α .

4ai) On reprend la notation zn = α−nxn. Comme |yn| ⩽ C|β|n on a d'après
(E') : |zn+1 − zn| ⩽ C|α|−1|β/α|n.

Comme |β/α| < 1, la série de terme général |β/α|n converge. Donc la série
de terme général zn+1 − zn = α−n−1xn+1 − α−nxn converge absolument.

4aii) Étant absolument convergente, la série de terme général zn+1 − zn est

convergente. Comme zn = z0 +
n−1∑
k=0

(zk+1 − zk), la suite (zn) converge. Notons

a = lim(zn).
On a donc xn = aαn + o(αn).

4aiii) a−zn est le reste d'ordre n−1 de la série de terme général (zk+1−zk).
Comme |zk+1 − zk| ⩽ C|α|−1|β/α|k on a :

|a− α−nxn| = |a− zn| = |a− α−nxn| ⩽ C|α|−1
∞∑

k=n

|β/α|k =
C

|α| − |β|
|β/α|n.

4aiv) On a donc, en multipliant par |α|n les deux membres de l'inégalité pré-
cédente : |xn−aαn| ⩽ C ′|β|n où C ′ = C

|α|−|β| . C'est dire que xn = aαn+O(βn).

4b) Par hypothèse, pour tout ε > 0 il existe N(ε) tel que |yn| ⩽ ε|β|n.
Pour tout k ⩾ N(ε) on a d'après (E') : |zk+1 − zk| ⩽ ε|α|−1|β/α|k.
Pour tout n ⩾ N(ε), par sommation de n à +∞ de la dernière il vient :

|a− α−nxn| = |a− zn| = |a− α−nxn| ⩽ ε|α|−1
∞∑

k=n

|β/α|k =
ε

|α| − |β|
|β/α|n,

puis en multipliant par |α|n les deux membres de l'inégalité précédente :
|xn − aαn| ⩽ ε

|α|−|β| |β|
n.

Ainsi pour tout n ⩾ N((|α| − |β|)ε) on a |xn − aαn| ⩽ ε|β|n.
C'est dire que xn = aαn + o(βn).
4c) On a donc yn = cy′n + y′′n où y′n = cβn et y′′n = o(βn). On a donc

xn = x′
n + x′′

n où

x′
n = x′

0α
n +

n−1∑
k=0

αn−k−1y′k = αnx′
0 + cβ

n−αn

β−α .
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x′′
n = a′′αn + o(βn) pour un certain a′′.

Ainsi : xn = aαn + c βn

β−α + o(βn),

(a est toujours la limite de α−nxn).

*****

E) Une première majoration de (|xn|)

1) D'après le théorème des accroissements �nis et puisque la dérivée de
x 7→ ex est x 7→ ex on a ex − 1 = xey où y est entre 0 et x. Donc ex − 1 ⩾ x si
x ⩽ 0 et ex − 1 ⩽ xex si x ⩾ 0. Donc |ex − 1| ⩽ |x|emax(x,0) pour tout x.

2a) On a w2m+2 ⩾ w
1/2
2m . On prouve par récurrence : w2m = w

1/2m

0 pour
tout m ∈ N.

2b) On suppose w0 > 1 car si w0 = 1 ce que l'on veut prouver est vrai pour
n'importe quel A1).

Posons x = 2−m ln(w0) ; x est strictement positif.

On a w2m − 1 = ex − 1 ⩽ xex = 2−m ln(w0))w
1/2m

0 ⩽ A12
−m où

A1 = w0 ln(w0).

3a) On a v2m+2 ⩽ v
1/2
2m . On prouve par récurrence : v2m = v

1/2m

0 pour tout
m ∈ N.

3b) On suppose v0 < 1 pour les mêmes raisons que pour w0 > 1.
Posons x = 2−m ln(v0) ; x est strictement négatif.
On a 1− v2m = |ex − 1| ⩽ |x| = 2−m| ln(v0)| ⩽ A22

−m où

A2 = | ln(w0)|.

4) Si n = 2m ou 2m+ 1, v2m − 1 ⩽ xn ⩽ w2m − 1 donc

|xn| ⩽ max(1− v2m, w2m − 1) ⩽ max(A1, A2)2
−m ⩽ A(1/

√
2)n

où A = max(A1, A2)
√
2, puisque m ⩾ (n/2)− 1.

*****

F) Recherche d'un équivalent de xn.

On note pour tout n :

rn = sup
k⩾n

|xk|,

1) La formule de Taylor-Young appliqué à la fonction x 7→
√
x au voisinage

de x = 1 donne ce résultat.
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2) On a xn+2 = −1 + 1
2

√
1 + xn+1 +

1
2

√
1 + xn.

On a
√
1 + xn+1 = 1 + 1

2xn+1 − 1
8x

2
n+1) + o(x2

n+1) et puisque x2
n+1 ⩽ r2n, le

terme complémentaire est aussi o(r2n). De même pour
√
1 + xn+1 et �nalement :

xn+2 − 1
4xn+1 − 1

4xn = yn où yn = − 1
16 (x

2
n + x2

n+1) + o(r2n).

3a) λ = −1+
√
17

8 et µ = 1+
√
17

8 .

3b)Posons P = X2 − X
4 − 1

4 = (X − λ)(X − µ).
Si x > 0 alors P (x) < 0 implique x < µ et P (x) > 0 implique x > µ.
On a P (1/2) = −1/8 donc µ > 1/2.
On a P (2/3) = 1/36 donc µ < 2/3.
Comme λ+ µ = 1/4, on a |λ| = −λ = µ− 1/4.
On a µ2 = µ+1

4 donc µ2 − |λ| = 2−3µ
4 > 0. Donc |λ| < µ2.

On a µ3 = 5µ+1
16 donc µ3 − |λ| = 5−11µ

16 > 5−10µ
16 > 0. Donc |λ| > µ3.

On pose :
xn+1 − λxn = zn.

4) On a zn+1 − µzn = xn+2 − (λ+ µ)xn+1 + (λµ)xn = xn+2 − (1/4)xn+1 −
(1/4)xn = yn.

5a) On a d'après 2) : |yn| ⩽ 1
8r

2
n + εnr

2
n où εn tend vers 0.

Donc |yn| ⩽ Cr2n pour un certain réel C positif.
D'après E4), |xn| ⩽ A(1/

√
2)n et |xn+1| ⩽ A(1/

√
2)n+1 ⩽ A(1/

√
2)n donc

rn ⩽ A(1/
√
2)n.

Finalement on a : |yn| ⩽ A2C(1/2)n. Donc : yn = O((1/2)n).

5b) On a donc zn+1 − µzn = yn et yn = O((1/2)n).
Comme µ > 1

2 . D'après D4a), on a zn = aµn +O((1/2)n) pour un certain
réel a. On en déduit zn = aµn + o(µn).

5c) On a : xn+1 − λxn = zn et zn = aµn + o(µn). Comme |λ| < µ on a,
d'après D3b) et D3c) :

xn = a
µ−λµ

n + o(µn) == bµn + o(µn) où b = 4a√
17
.

6a) On suppose désormais a = 0 ce qui entraîne b = 0 donc xn = o(µn). On
en tire : rn = o((µn), et comme yn = O(r2n), on a yn = o((µ2)n).

6b) On a zn+1 − µzn = yn et yn = o((µ2)n). Comme µ2 < µ on a d'après
D3b) : zn = o((µ2)n).

6c) On a xn+1 − λxn = zn et zn = o((µ2)n). Comme |λ| < µ2 on a d'après
D3b) : xn = o((µ2)n).

6d) On répète 6a) avec µ2 au lieu de µ. Il vient : yn = o((µ4)n).
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6e) On a zn+1 − µzn = yn et yn = o((µ4)n). Comme µ4 < µ on a d'après
D3b) : zn = o((µ4)n).

6f) On a xn+1 − λxn = zn et zn = o((µ4)n). Comme |λ| > µ3 > µ4 on a
d'après D4b) et D4c) :

xn = cλn + o((µ4)n) pour un certain réel c.
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