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SUITES RECURRENTES
A) La convergence

1) 1 s’agit de trouver les réels a > 0 tels que a = 3(y/a + /a), soit a = \/a,
soit a =0 ou a = 1.

2)a) Par I’absurde, si ug = 0 et u; = 0 alors d’aprés la relation de récurrence
u, = 0 pour tout n > 0 soit : U = (0) ce qui est contraire & ’hypothése.

Donc ug > 0 ou uy > 0. D’apres (R), si l'un de u,_2 et u,_1 est strictement
positif il en est de méme de u,,. Donc u,, > 0 pour tout n > 2.

2)b) Raisonnons par l’absurde. Supposons l’existence de n > 0 tel que
(Un,unt1) = (1,1). On a uyq2 = 3(v1+ /1) = 1. Par récurrence on obtient
ainsi u; = 1 pour tout ¢ >n.Sin >1,onal = %(Un—l + 1) donc u,—1 = 1.
Par récurrence descendante on obtient u; = 1 pour tout ¢ < n. Ainsi U = (1) ce

qui est contraire a ’hypothése.

3)a) Si v, = 0 alors u, = 0 ou up4+1 = 0 donc U = (0) ce qui est contraire
a I’hypothése.

3)b) Puisque up41 = v, €t Uy = Uy, O A Upio = %(2@) = /Uy, et
puisque v, < 1on a /v, = v,. Donc u, 9 > v,, et comme 1 = v, et Uupyy > vy,
on a : Up41 = Up.

Pour w,,, c’est le méme raisonnement avec des < au lieu de >. Puisque
Upt1 < Wy et Uy < Wy, 00 & Uypo < /Wy < Wy, car wy, 2= 1. Donce uy, 40 < wy,
et comme 1 < wy, et Upy1 < Wy, 0N A Wpy1 < Wo.

3)c) On a vu : Upy2 = \/Un, de méme up43 = /Unt1 et a fortiori u,q3 >
/Up et comme 1 > /v, on a: Upta = \/Up.
De méme on a vu : upto2 < /Wy, et Upi3 < /Wnt1 < /W, et comme

1< Jwy, ona: wypo 2 /Wy,

3d)) La suite (v,,) est strictement positive pour n > 2, croissante et majorée
par 1. Elle tend donc vers une limite ¢’ vérifiant : 0 < ¢/ < 1. Comme v, 1o >
V/Un, on obtient par passage & la limite : ¢ > v/ donc, puisque ¢/ > 0, ¢ > 1.
Finalement ¢/ = 1.

De méme la suite (w,) est décroissante et minorée par 1. Elle tend donc
vers une limite ¢ > 1 vérifiant : ¢/ < 1. Comme wy, o < \/w,, on obtient par
passage a la limite : ¢ > v/¢" donc, puisque ¢ > 0, ¢ > 1. Finalement ¢ = 1.



On a v, < u, < w, donc par encadrement (u,) tend vers 1.
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B) Les variations de (u,)

1) Ona: uppo—1 = 3(\/Upr1 — 1)+ 5 (/U —1) > 0. D’aprés A2b), puisque
U n’est pas constante, on a : (up, up+1) 7 (1,1) donc (\/up1—1)+(/up—1) >0
et finalement u,,o > 1.

Ainsi upy1 > 1 et upyo > 1. Donc upi3 > 1.

On conclut par récurrence. Soit ¢ > 3; supposons prouvés u, > 1 pour
p+2 < n < q;alors comme ug—1 > 1et ug > 1, 0nauger > 1. Ainsi u, > 1
pour n = p+ 2.

2) Preuve similaire. On a : up1o — 1 = 3(,/Up1 — 1) + 3(,/u, — 1) < 0.
D’aprés A2b), on a: up11 —1 < 0ouwu,—1 < 0donc u,qe < 1. Par récurrence
U, < 1 pourn = p+ 2.

3) Supposons d’abord ¢ = 0.
Alors ug # 1 d’aprés A2b). Si ug > 1 (resp. < 1) alors u, > 1 (resp. < 1)
pour tout n > 2. Ainsi U vérifie ou bien (R+) ou bien (R-) pour la valeur 0.

On suppose maintenant ¢ > 1.

On a ug_1 # 1 d’aprés A2b). Si ug_1 > 1 (resp. < 1) alors u,, > 1 (resp.
< 1) pour tout n > g+ 1.

Si ¢ =1 alors U vérifie ou bien (R+) ou bien (R-) pour la valeur 0 = g — 1.

Sig > 2 alors ug—a < 1 (resp. > 1) car si ug_2 > 1 (resp. < 1) alors uy < 1
(resp. >1). Donc U vérifie ou bien (R+) ou bien (R-) pour la valeur p = ¢ — 1.

S’il existe r tel que u, = 1 alors r < ¢ car u, # 1 pour n > ¢, mais alors
uq # 1 et c’est contradictoire donc ¢ est le seul n tel que u, = 1.

4) Par définition p est le plus petit entier n tel que (uy, — 1)(upy1 —1) = 0.
Donc (un —1)(tnt41 — 1) < 0 pour tout n < p— 1. On en déduit que le signe de
(up — 1)(up — 1) est (—1)P donc celui de ug — 1 est (—1)? si U vérifie (R+) pour
la valeur p et (—1)P*! si U vérifie (R-) pour la valeur p.

5) Il n’existe donc aucun n tel que (un, — 1)(upy1 — 1) = 0. Donc (u, —
1)(tn+1 — 1) < 0 pour tout n. En particulier u,, # 1 pour tout n.

Fokkk
C) Existence des différents types de suites (uy)

1) Par construction on a fo(t) = a, f1(t) =t, puis

1alt) = 5 (VI + VT 20)




pour tout n > 2.

Les fonctions ¢ — a et ¢ — ¢ sont continues. La fonction 2 — +/z est continue.
Soit n > 2. Supposons acquise la continuité de fi pour tout & < n, ce qui est vrai
pour n = 2; alors f,_1 et f,_o sont continues, puis f,, = % (\/fn_l + fn_g)
est continue. Par récurrence on prouve ainsi que f,, est continue pour tout n > 1.

La fonction f1 : ¢ — t tend vers 400 en +oo il en est de méme de f5 :
t — 2(v/a+ V). Soit n > 3; supposons établi tiigrnoo fr pour tout k de 1 &

n —1; alors f, = % (\/fn_l + \/fn_g) tend vers +o0o en 4o00. Par récurrence

on prouve ainsi que f, tend vers +o00 en 400 pour tout n > 1.
On prouve de méme que puisque f; et fo sont strictement croissantes il en
est de méme de f,, pour tout n > 1.

2) Supposons t = 0. D’aprés A2) on a u, < 1 pour tout n > 2 donc
fn(0) < 1 pour tout n > 2. D’aprés 1) f,, réalise une bijection de [1,4o0o[ sur
[£(0), 4+o00[. Il existe donc un et un seul ¢ tel que f,(¢) = 1.

Puisque f1(t) = t il est clair que 1 est le seul ¢ tel que f1(¢) = 1. Donc t; = 1.

On a 1= 3(y/a+ /) donc
ty = (2 —Va)?.

3) Supposons t = t,. Par construction u, = 1. D’aprés B3), U vérifie (R+)
ou (R-) pour la valeur ¢ — 1.

Si ¢ = 1 alors puisque ug = a < 1, U est dans (R-) pour la valeur 0, donc
U, < 1sin>1, puist, >t; =1.

Si g > 2, d’aprés B4) puisque ug — 1 < 0 et (un — 1)(unt1 — 1) < 0 pour
tout n < ¢ — 2, ug—1 est du signe de (—1)7.

Si ¢ est pair (resp. impair) alors ug—1 > 1 (resp. ug—1 < 1) donc U vérifie
(R+) (resp. (R-)) pour la valeur ¢ — 1.

Soit un entier n > ¢. Donc u,, = fr,(t;) > 1 = fi(t,) (resp. u, = fn(ty) <
1 = fu(ts)) et comme f, croit strictement on a ¢, < t, (resp. ¢, > t, ) pour
tout n > q.

4) On a to;,—1 < tamt1 < to donc la suite (t2,,—1) est croissante et majorée ;
elle converge vers une limite 7_.

On a to,, > tomas > t1 donc la suite (t2,,,—1 est décroissante et minorée ; elle
converge vers une limite 7. Mais comme to,,—1 < tom, on a 7— < 74.

5 Onal0<ti=1<t3<---<Tet4oo>ty >ty > >T.

e Si0 <t <t alors u, < 1 pour tout n > 0 donc U vérifie (R-) pour la
valeur 0. Ainsi [0,¢1] C I_(a,0).

o Sitoym—1 <t < tony1 pour un certain m > 1, alors
fgm_l(t) > 1 2 f2m+1(t) soit U2m—1 > 1 2 U2m+1- De phlS tzm > t2m+1
donc ugy, < ugmy1 donc ug,, < 1. Ainsi U vérifie (R-) pour la valeur 2m
soit ]tgmfl,tngrl] cl_ (a7 2m)]

e Sit >ty alors u, > 1 pour tout n > 1 tandis que ug = a < 1, donc U
vérifie (R+) pour la valeur 1. Ainsi [t2, +00[C I+ (a,1).



e Sito,, >t = toyae pour un certain m > 1, alors ugy, < 1 < ugmio.
De phlS tom+1 < tam42 donc Uam4+1 > U2m4-2 donc Um+1 > 1. Ainsi U
vérifie (R+) pour la valeur 2m + 1 soit [tam+2, tam[C I+ (a,2m + 1)].

e Sit =7 alors U vérifie (S) et {7} C J(a).

Les ensembles I_(a,2m) pour m € N, I (a,2m — 1) et J(a) sont deux a
deux disjoints d’aprés leurs définitions.

Les intervalles [0,t1], |t1,t3], .. [t2, +00], [ta,t2], [te,ta[, -.-; {7}, consti-
tuent une partition de [0, +oo[. Les inclusions prouvées ci-dessus sont donc des
égaliteés.
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D) Une équation aux différences finies

1) En multipliant par o= "~! les deux membres de (E) on obtient (E’).
n—1

On a par sommation : z, = zo + Y. a Ly,
k=1

n—1
puis : ¥, = zoa” + Y o F 1y,
k=0

n—1 n n
2) z, = a"xg + a7 ! Z (B/a)k = amxy + 55:3

n—1
3a) On a: [zn| < [a”(|zol + Z la[* = * k| < a®||zo|+ X |a* O8],
k=0

soit [en] < |af||zo| + C‘[T'm‘ii

Puis : |z, | < 8" (\xo\ + C e \oc|> ce qui prouve bien que x,, = O(|8"|.

3bi) On reprend le calcul de 3a). On a toujours |y,| < C|8|™ pour n <
N(e) — 1 et de plus |y,| < ¢|5|™ pour n = N(e).
Fixons n > N (¢).

N(e)—1 n—1
Ona: |z,| < |a"[|zo| + C Z la* B e 3 Jalm TR B,
k=0 k=N (¢e)
] N(e)—1 N(e) _|,|N(e) N(e) _|q|N (=)
puis : 3 oY = o] NEOPEGHEES < PEEmEET car
la] < 1.
= nek—1|alk « | inek—1)ak _ 18" =]a]”
et: T Jalr B < T aprt )t = el
k=N (e) k=0

On en déduit I'inégalité voulue :

N(&) _| N S
|Tn| < |zol|a™| + ol \BI—}ZI + slﬁ‘lﬁ‘_}zi pour tout n > N(g).

3bii) On a pour tout n > N(e) :
‘N(a) ‘Ct N (e)

1817z < laolla/ 8" + C1g| B al™ o0
Lalimite quand n tend vers +o00 du second membre de I'inégalité est &

1
1Bl=laf



Choisissons un réel K > BI=Ta] \al

Il existe N'(g) > N(e) tel que |B| "|x,| < Ke pour tout n = N'(e).
Finalement on a |5|™"|z,| < € pour tout n > N'(¢/K).

C’est une fagon d’exprimer : z,, = o(8").

3c) On a y, = ¢f™ + z, ou z, = o(f"™). Donc d’aprés les questions précé—
dentes on a x,, = ca"xg+ 55:3 +o(B™). Puis ",

que x, ~ cﬁﬁna

4ai) On reprend la notation z, = a~"x,. Comme |y,| < C|B|" on a d’aprés
(E") : [2n4+1 — 2a| < Clal 7B /a|™
Comme |3/a| < 1, la série de terme général |3/a|™ converge. Donc la série

de terme général 2,1 — 2, = o~ "1z, 11 — a ", converge absolument.

4aii) Etant absolument convergente, la série de terme général 2,1 — 2, est
n—1
convergente. Comme z, = 2o + Y (#k+1 — 21), la suite (z,) converge. Notons
a = lim(z,).
On a donc z, = aa™ + o(a™).

4aiii) a— z, est le reste d’ordre n—1 de la série de terme général (zj4+1 — 2k)-
Comme |21 — 2| < Cla|7tB/al* on a:

la—a "] =la—zp| = |a —a™"an| < Clallzlﬁ/alk |16/al™.

|| 18|

4aiv) On a donc, en multipliant par |a|" les deux membres de I'inégalité pré-
cédente : |z, —aa™| < C'|B]" ou C' = aI=TAl | - Cest dire que z, = aa™ +0O(5").

4b) Par hypothése, pour tout € > 0 il existe N(e) tel que |y,| < €|5|™.
Pour tout k > N(¢) on a d’aprés (E) : |zr41 — 21| < la7|B/alk.
Pour tout n > N(g), par sommation de n & +o0o de la derniére il vient :

oo
la —a "z, = |a — 2,| = |a — a "x,| < ela™? Z 1B8/al* = EEE | 7
k=n

|8/l

puis en multipliant par |a|™ les deux membres de l'inégalité précédente :
2 — a0"| < B

Ainsi pour tout n > N((|a| — |B])e) on a |z, — aa™| < g|5|™.

C’est dire que z, = aa™ + o(8").

4c) On a donc y, = cyl, + y ou y, = ¢f™ et y! = o(f™). On a donc
Tn =2, + ) ou

n—

I am n—k—1,/ _ . mn./ g —a™

T, = Lo +k§ e} Y =axy+cC Ba -
=0



xl = a”a™ + o(8™) pour un certain a’.
Ainsi : z, = aa™ + cﬂﬁfa +o(B8™),
(a est toujours la limite de o™ "x,,).

Tk
E) Une premiére majoration de (|z,|)

1) D’apreés le théoréme des accroissements finis et puisque la dérivée de
x> e’ est x—e” onae’—1=uxe¥ ou y est entre 0 et z. Donc e — 1 > x si
r<0ete”—1<xe” six>0. Donc |e* — 1] < |x\emax("*0) pour tout x.

1 ) m

2a) On a womys = w27/n2. On prouve par récurrence : ws,, = wé/z pour

tout m € N.

2b) On suppose wy > 1 car si wy = 1 ce que 'on veut prouver est vrai pour
n’importe quel A;).
Posons « = 27 In(wyg) ; = est strictement positif.
Onawy, —1=e"—1< ze” = 2””“ln(wo))w(l)/2 < A;27™ ou
A1 = Wy ln(wo).
3a) On a vgmto < vér/nz On prouve par récurrence : vo,, = v(l)/z
m € N.

" pour tout

3b) On suppose vy < 1 pour les mémes raisons que pour wy > 1.
Posons = 27™1In(vg) ; = est strictement négatif.
Onal—wg, =" —1] <|z| =27"|In(vy)| < A227™ ou

As = | In(wp)]-
4) Sin=2m ou 2m+ 1, vay, — 1 < 2, < way, — 1 donc
2| < max(1 — vap,, wopm — 1) < max(Ar, 42)27™ < A(1/V2)"
ott A = max(A;, Ap)v/2, puisque m > (n/2) — 1.
*oxkokok
F) Recherche d’un équivalent de z,.

On note pour tout n :

Ty = sup |zg|,
k>2n

1) La formule de Taylor-Young appliqué & la fonction x — /2 au voisinage
de x = 1 donne ce résultat.



2) Ona xpia=—-1+ %\/1 + Tpy1 + %\/1 + 2.
Ona I+ o1 =1+ 52p41 — 322,1) +o(x2,,) et puisque z2,; <72, le
terme complémentaire est aussi o(r2). De méme pour /T + 2,11 et finalement :

1 1 . 1 2 2 2
Tn+2 = 1Tn+1 — 7Tn = Yn OU Yn = _ﬁ(wn + anrl) + O(Tn)'

— =1+V17 — 117

3b)Posons P = X2 — & — 1 = (X — \)(X — p).

Si z > 0 alors P(z) < 0 implique 2 < p et P(x) > 0 implique = > p.
On a P(1/2) =—1/8 donc p > 1/2.

On a P(2/3) =1/36 donc p < 2/3.

Comme A\+p=1/4,ona|X=-A=p—1/4

On a p? = £ donc p? — |A| = 252 > 0. Donc [A| < p2.

On a p® = 3L done p® — [N = 25 > 52008 5 0. Donc [\ > .
On pose :

Tyl — ATy = Zn.

4) On a zp41 — pi2n = Tpp2 — (A + W) Tng1 + (AT = Tpge — (1/4) 2041 —
(1/)xy = yn.-

5a) On a d’apreés 2) : |y,| < 472 +,72 oil &, tend vers 0.

Donc |y,| < Cr2 pour un certain réel C positif.

D’aprés E4), |z,| < A(1/vV2)" et |z,41] < A(1/V/2)"H < A(1/4/2)" donc
T < A(1/V/2)".

Finalement on a : |y,| < A2C(1/2)". Donc : y, = O((1/2)").

5b) On a donc z,41 — pzn = yn €t y, = O((1/2)™).
Comme > 1. D’aprés D4a), on a 2, = ap™ + O((1/2)") pour un certain
réel a. On en déduit z, = au™ + o(u™).

5¢) On a: Tny1 — ATy = 2 et 2, = ap” + o(u™). Comme |A| < pi on a,
d’aprés D3b) et D3c) :
Ty = #i)‘un + 0(/"’”) == bﬂ,n —+ O(/‘l’n) ol b= %.

6a) On suppose désormais a = 0 ce qui entraine b = 0 donc z,, = o(p™). On
en tire : 7, = o((u"), et comme y,, = O(r2), on a y, = o((u?)").

6b) On a 2,1 — pzn = Yn et yp = o((¢*)"). Comme p? < p on a d’aprés
D3b) : z, = o((u*)").

6¢c) On a 01 — Az, = 2, et 2, = o((p?)"). Comme |\| < p? on a d’aprés
D3b) : z,, = o((p*)").

6d) On répéte 6a) avec u? au lieu de p. Il vient : y,, = o((u*)™).



6e) On a z,.1 — puzn = Yn et y, = o((u*)"™). Comme p* < p on a d’aprés
D3b) : z, = o((uh)").

6f) On a ,.1 — Az, = 2, et z, = o((p*)"). Comme [\ > p®> > p* on a
d’aprés D4b) et D4c) :
T, = cA" + o((pu*)™) pour un certain réel c.



