
Correction Agrèg interne ep1 2020

Partie 1

1. 8j 2 [[1; n]] ; la famille (e1; :::; ej+1) est libre car c�est une sous famille de la base (e1; :::; en) : Donc ej+1 =2
V ect (e1; :::; ej) donc V ect (e1; :::; ej)  V ect (e1; :::; ej+1) donc Ej  Ej+1:
donc f0g  E1  :::  En donc la famille (Ej)0�j�n est un drapeau total.

2. On a f0g  E1  :::  En = E:
8j 2 [[1; n]] ;dimEj+1 � dimEj � 1
Et
Pn�1

j=0 (dimEj+1 � dimEj) = dimEn � dimE0 = n
Donc 8j 2 [[1; n]] ;dimEj+1 � dimEj = 1:
On a dimE1 = 1 on choisit e1 2 E1n f0Eg et E1 = V ect (e1) :
Ensuite dimE2 = 2 donc on choisit e2 tel que (e1; e2) soit une base de E2:

Ainsi de suite, pour tout j dans [[2; n]] on utilise le thèorème de la base incomplète pour compléter la base de
Ej = (e1; :::; ej) en (e1; :::; ej+1) : Et on obtient une base adaptée au drapeau.

3. Soit (e1; :::; en) une base adaptée au drapeau total.

Le procédé d�orthonormalisation de Gram-Schmidt nous donne une base orthonormée (f1; :::; fn) véri�ant 8j 2
[[1; n]] ; V ect (f1; :::; fj) = V ect (e1; :::; ej) = Ej : Donc c�est une base orthonormée adaptée au drapeau total.

4. u diagonalisable donc il existe une base (e1; :::; en) de E formée de vecteurs propres de u: Notons pour tout
j 2 [[1; n]] ; Ej = vect (e1; :::; ej) :
Alors (Ej)0�j�n est un drapeau total.

De plus 8j 2 [[1; n]] ; u (ej) 2 Kej (car ej est un vecteur propre)
Donc 8j 2 [[1; n]] ; u (ej) 2 Ej
Donc 8j 2 [[1; n]] ;8k 2 [[1; j]] ; u (ek) 2 Ek � Ej
Finalement, u (Ej) = u (vect (e1; :::; ej)) � Ej donc ce drapeau est stable par u:

5.

(a) Soit x tel que un�1 (x) 6= 0E . Soit a0; a1; :::; an�1 2 K tel que

a0x+ a1u (x) + :::+ an�1u
n�1 (x) = 0E

On applique un�1 à cette égalité, on obtient a0un�1 (x) = 0E donc a0 = 0: Par récurrence, si on suppose
que a0 = a1 = ::: = aj = 0 alors en appliquant un�j on obtient aj+1un�1 (x) = 0E et donc aj+1 = 0:
Finalement, la famille

�
x; u (x) ; u2 (x) ; :::; un�1 (x)

�
est libre et donc toute sous famille est libre également.

(b) Soit i 2 [[1; n� 1]] et y 2 kerui alors ui+1 (y) = u
�
ui (y)

�
= u (0) = 0 donc y 2 kerui+1: On a donc

kerui � kerui+1:
Supposons kerui = kerui+1

Si z 2 kerum avec m � i alors um�i�1 (z) 2 kerui+1 = kerui donc ui
�
um�i�1 (z)

�
= 0E donc um�1 (z) =

0E : On en déduit kerum = kerum�1: En itérant, on obtient 8m � i; kerum = kerui:
Or, kerun = E et kerui 6= E car un�1 6= 0L(E) donc notre hypothèse et absurde et kerui  kerui+1.
Donc la famille

�
kerui

�
0�i�n est un drapeau total de E:

8i 2 [[1; n]] ;8y 2 kerui; ui (u (y)) = u
�
ui (y)

�
= u (0E) = 0E donc u (y) 2 kerui: et donc ce drapeau est

stable par u:
La famille

�
x; u (x) ; u2 (x) ; :::; un�1 (x)

�
est une famille libre de n vecteurs dans un espace de dimension n

c�est donc une base.

De plus, si on note ej = un�j (x)

On a u (e1) = un (x) = 0E ; u2 (e2) = 0E ; u3 (e3) = 0E et 8j 2 [[1; n]] ; uj (ej) = un (x) = 0E :
8j 2 [[1; n]] ;8k 2 [[1; j]] ; uj (ek) = uj�k

�
uk (ek)

�
= uj�k (0E) = 0E :

Donc 8j 2 [[1; n]] ; vect (e1; :::; ej) � keruj or ces deux espaces sont de la même dimension j donc ils sont égaux
et la base (e1; :::; en) est adaptée au drapeau

�
kerui

�
0�i�n :
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6. Supposons qu�il existe un drapeau total stable par u et notons (e1; :::; en) une base de E adaptée à ce drapeau.

8j 2 [[1; n]] ; u (vect (e1; :::; ej)) � vect (e1; :::; ej)
En particulier,8j 2 [[1; n]] ; u (ej) 2 vect (e1; :::; ej) donc la matrice de u dans la base (e1; :::; en) est triangulaire
supérieure. Donc u est trigonalisable.

Réciproquement, soit (e1; :::; en) une base qui trigonalise u: Et soit (Ej)0�j�n le drapeau total dé�ni par Ej =
vect (e1; :::; ej) :

Comme la matrice de u dans la base (e1; :::; en) est triangulaire supérieure, on a 8i 2 [[1; n]] ; u (ei) 2 vect (e1; :::; ei)
et donc u (Ej) � Ej . Donc ce drapeau est stable par u:

7. Si u est trigonalisable il existe un drapeau total stable par u; et comme E est euclidien, on peut trouver une
base orthonormée qui est adaptée à ce drapeau et donc il existe une base orthonormée dans laquelle la matrice
de u est triangulaire supérieure.

Partie II

8. Soit H C G:

(a) Montrons que ? est bien dé�nie
C�est à dire que si g1H = k1H et g2H = k2H alors g1g2H = k1k2H:

Supposons k�11 g1 2 H et k�12 g2 2 H
Comme H est distingué k�12

�
k�11 g1

�
k2 2 H

donc
�
k�12 k�11 g1k2

� �
k�12 g2

�
2 H

donc k�12 k�11 g1g2 2 H
donc (k1k2)

�1
(g1g2) 2 H

Et ? est bien dé�nie.
Montrons que ? est associative.
8g1; g2; g3 2 G;

(g1H) ? ((g2H) ? (g3H)) = (g1H) ? (g2g3H)

= g1 (g2g3)H = (g1g2) g3H

= (g1g2H) ? (g3H)

= ((g1H) ? (g2H)) ? (g3H)

8g 2 G; (gH) ? (1GH) = g:1GH = gH = (1GH) ? (gH) donc 1GH = H est un élément neutre.
8g 2 G; (gH) ?

�
g�1H

�
= 1GH = H et

�
g�1H

�
? (gH) = H donc g�1H est le symétrique de gH:

Donc (G=H; ?) est un groupe.

(b) La surjectivité est évidente par construction.
8g1; g2 2 G; � (g1g2) = g1g2H = (g1H) ? (g2H) = � (g1) ? � (g2) :

Donc � est un morphisme de groupe surjectif.

9. Notons que si A = (ai;j), B = (bi;j) et C = (ci;j) sont trois matrices de T+n (K) et si C = AB alors 8i 2
[[1; n]] ; ci;i = ai;ibi;i:

(a)

� La matrice In 2 TU+n (K).
� Soit A;B 2 TU+n (K) : Notons C = (ci;j) = AB:
On a , 8i 2 [[1; n]] ; ai;i = bi;i = 1 donc 8i 2 [[1; n]] ; ci;i = 1:
Donc TU+n (K) est stable par multiplication.

� Soit A 2 TU+n (K) soit B = (bi;j) l�inverse de A dans T+n (K) :
On a8i 2 [[1; n]] ; ai;i = 1 et 8i 2 [[1; n]] ; ai;ibi;i = 1:
Donc B 2 TU+n (K)

Finalement, TU+n (K) est un sous-groupe de T
+
n (K) :

Soit A = (ai;j) 2 TU+n (K) et P = (pi;j ) 2 T+n (K). Notons D = (di;j) = P
�1AP 2 T+n (K) :

8i 2 [[1; n]] ; di;i = 1
pi;i
ai;ipi;i = ai;i = 1: Donc P�1AP 2 TU+n (K) :

Donc TU+n (K) C T+n (K) :
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(b) Il existe des matrices trigonalisables non-triangulaires.

Par exemple, si A =
�
1 1
0 1

�
et si P =

�
1 1
1 2

�
alors

P�1AP =

�
2 �1
�1 1

��
1 1
0 1

��
1 1
1 2

�
=

�
3 4
�1 �1

�
=2 TU+n (K) :

donc TU+n (K) n�est pas un sous-groupe distingué de GLn (K) pour n > 1:

10. Il existe un élément g0 2 G tel que 8x 2 G; x 2 H ou x 2 g0H:
Si x 2 H;8h 2 H;x�1hx 2 H:
Si x 2 g0H; notons x = g0k avec k 2 H:
8h 2 H;x�1hx = k�1g�10 hg0k:

Pour avoir x�1hx 2 H il su¢ t de montrer que g�10 hg0 2 H:
Or 8h 2 H;hg0 2 G donc

� soit hg0 2 H mais alors g0 2 H ce qui n�est pas possible car on doit avoir g0H 6= H:
� soit hg0 2 g0H donc g�10 hg0 2 H:

Donc H C G:
Preuve alternative (Merci à Maximilien Chapuy) :

8g 2 G si g =2 H alors G = H [ gH, en e¤et gH 6= H il n�y a que deux classes.

Par ailleurs, Hg \H = ; car g =2 H: Donc Hg � gH or ces deux ensembles ont le même cardinal donc ils sont
égaux.

Ainsi, 8g 2 G;Hg = gH; donc H C G:

11. A =
�
0 �1
1 0

�
et B =

�
0 1
1 0

�
A3B =

�
0 �1
1 0

�3�
0 1
1 0

�
=

�
�1 0
0 �1

��
0 �1
1 0

��
0 1
1 0

�
=

�
0 1
�1 0

��
0 1
1 0

�
=

�
1 0
0 �1

�
:

BA =

�
0 1
1 0

��
0 �1
1 0

�
=

�
1 0
0 �1

�
:

(a) A4 = A3 �A =
�

0 1
�1 0

�
�
�
0 �1
1 0

�
=

�
1 0
0 1

�
= I2

Donc A�1 = A3 2 � et 8n 2 N; An = Aq où q est le reste de la division de n par 4 et A�n =
�
A�1

�n
=

A3n 2 �:
Donc 8n 2 Z; An 2 �:

B2 =

�
0 1
1 0

��
0 1
1 0

�
= I2

Donc B�1 = B et 8n 2 Z; B2n = I2 et B2n+1 = B. Donc 8n 2 Z; Bn 2 �:
BA = A3B 2 � ; BA2 = A3BA = A6B = A2B 2 � ; BA3 = A3BA2 = A6BA = A2BA = A5B =
AB 2 �:
(AB)A = A (BA) = A4B = B 2 �
(AB)A2 = BA 2 � ; (AB)A3 = BA2 2 �:
Ainsi de suite on montre aisément que � est stable par mutiplication et par inverse.
Donc � est un sous-groupe de GL2 (R) :
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(b) R = fI2; Bg car B2 = I2:
� = hAi [ hAiB d�après la question 10. hAi C �: Donc �=� est un groupe à deux éléments.
Considérons ' : R! �=� la restriction de � à R. C�est un morphisme de groupe car � est un morphisme
et ' est bijective.
Donc �=� et R sont isomorphes.

(c) � est commutatif et R est commutatif (comme tous les groupes engendrés par un seul élément). Donc ��R
est commutatif mais � ne l�est pas ( BA 6= AB). Donc ��R et � ne sont pas isomorphes.

12.

(a) HgK =
[
h2H

hgK =
[
k2K

Hgk:

(b) On a G =
[
g2G

HgK car g 2 HgK en prenant l�élément neutre de chaque côté.

Il su¢ t donc de démontrer que 8g; g0 2 G on a soit HgK \Hg0K = ; soit HgK = Hg0K:

Suposons qu�il existe x 2 HgK \Hg0K donc x = hgk = h
0
g0k0 avec h; h0 2 H et k; k0 dans K:

Donc g = h�1h
0
g0k0k�1 2 Hg0K donc HgK � Hg0K de même par le raisonnement symétrique on a

Hg0K � HgK: Donc Hg0K = HgK:

Partie III

13.

(a) P(1;2;:::;n) =

0BBBBBBBBB@

0 0 � � � � � � 0 1
1 0 0

0 1 0
...

... 0 1
. . .

...
...

. . .
. . .

. . .
...

0 � � � � � � 0 1 0

1CCCCCCCCCA
(b) 8�; � 2 Sn, on a 8i 2 [[1; n]] ; u� � u� ("i) = u�

�
"�(i)

�
= "���(i)

Donc les endomorphismes u� � u� et u��� coïncident sur la base ("1; :::; "n) donc ils sont égaux.
Donc P�P� = P��� : On en déduit P�1� = P��1 :

Et si � = c1:::ck alors P� = Pc1 :::Pck :

(c) P� 2 On (R) car les vecteurs colonnes de P� forment une base orthonormée, c�est la base canonique dans
un certain ordre.

(d) Montrons que 8� 2 Sn;detP� = sig (�) où sig (�) désigne la signature de �: Or 8� 2 Sn;

detP� = det
�
"�(1); :::; "�(n)

�
= sig (�) det ("1; :::; "n) = sig (�) :

car le déterminant est une n-forme alternée.
Donc P� 2 SOn (R), � 2 An:

14.

(a) Ti;j (�)A = A+ �Ei;jA et Ei;jA est une matrice dont seule le ligne i est non nulle et elle est égale à la je

ligne de A:
Donc Ti;j (�)A s�obtient à partir de A en faisant Li  Li + �Lj :

(b) Di (�)A s�obtient à partir de A en faisant Li  �Li

ATi;j (�) s�obtient à partir de A en faisant Cj  Cj + �Ci

car t (ATi;j (�)) =t Ti;j (�)
t
A = Tj;i (�)

t
A:

ADi (�) s�obtient à partir de A en faisant Ci  �Ci:
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(c) Soit u 2 L (Rn) dont la matrice dans la base canonique est A
Notons C1; :::; Cn les vecteurs colonnes de A:
En supposant i < j, les vecteurs colonnes deAPi;j sont u ("1) ; :::; u ("j) :::; u ("i) ; :::; u ("n) = C1; :::; Cj ; :::; Ci; :::Cn
Donc APi;j s�obtient à partir de A en intervertissant les colonnes Ci et Cj :
Astuce tPi;j = P

�1
i;j = Pi;j car Pi;j 2 On (R) :

Pi;jA =
t Pi;jA =

t (tAPi;j)

Donc Pi;jA s�obtient à partir de A en intervertissant les lignes Li et Lj :
Donc AP� s�obtient à partir de A en appliquant la permutation � à ses vecteurs colonnes. Et P�A s�obtient
à partir de A en appliquant la permutation � à ses vecteurs lignes.

Pour comprendre ce que signi�ent ces phrases il peut être utile de regarder sur un exemple.

Si P(132) =

0@ 0 1 0
0 0 1
1 0 0

1A
P(132)A =

0@ 0 1 0
0 0 1
1 0 0

1A0@ a b c
d e f
g h i

1A =

0@ d e f
g h i
a b c

1A0@ L��1(1)
L��1(2)
L��1(3)

1A

AP(132) =

0@ a b c
d e f
g h i

1A0@ 0 1 0
0 0 1
1 0 0

1A =

0@ c a b
f d e
i g h

1A
= =

�
C�(1) C�(2) C�(3)

�
15. Notons V = (vi;j) donc si i > j,vi;j = 0 et vi;i 6= 0:

De même on note U = (ui;j) :

On a P� = (pi;j) où pi;j = �i;�(j)
Calculons c le coe¢ cient (� (j) ; j) de P�V:

c =
Pn

k=1 p�(j);kvk;j =
Pn

k=1 ��(j);�(k)vk;j = vj;j 6= 0:
Calculons d le coe¢ cient (� (j) ; j) de UP�0 :

d =
Pn

k=1 u�(j);k�k;�0(j) = u�(j);�0(j):

Si P�V = UP�0 alors u�(j);�0(j) 6= 0 donc �0 (j) � � (j) :
On a montré que 8j 2 [[1; n]] ; �0 (j) � � (j) :
Or,
Pn

j=1 �
0 (j) =

Pn
j=1 j =

Pn
j=1 � (j) donc 8j 2 [[1; n]] ; �0 (j) = � (j) :

16. (Ti;j (�)A s�obtient à partir de A en faisant Li  Li + �Lj)

(a) Posons A = (ai;j) : Soit k tel que ak;1 6= 0 et 8i > k; ai;1 6= 0:

A =

0BBBBBBB@

a1;1 a1;2 � � � � � � a1;n
...

... � � � � � �
...

...
... � � � � � �

...

ak;1
... � � � � � �

...
0 an;2 � � � � � � an;n

1CCCCCCCA

B = Tk�1;k

�
�ak�1;1ak;1

�
� � � � � T2;k

�
� a2;1
ak;1

�
T1;k

�
� a1;1
ak;1

�
A =

0BBBBBBB@

0 a1;2 � � � � � � a1;n
...

... � � � � � �
...

0
... � � � � � �

...

ak;1
... � � � � � �

...
0 an;2 � � � � � � an;n

1CCCCCCCA
Tous les termes de la première colonne sont nuls sauf ak;1:

On choisit l = max fi 2 [[1; n]] n fkg ; ai;2 6= 0g ; en multipliant à gauche par la transvection Ti;l
�
�ai;2
al;2

�
(pour i 6= k) on remplace le coe¢ cient ai;2 par 0: Et donc on peut obtenir une matrice qui a n � 2 lignes
qui commencent par deux coe¢ cients nuls et une ligne qui commence par un 0.
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Ainsi de suite, en multipliant par des transvections Ti;l (�) on va �nir par obtenir une matrice dont les
lignes sont échelonnées. C�est-à-dire qu�une ligne à un coe¢ cient non-nul sur la première colonne, une ligne
commence par un coe¢ cient nul, une ligne commence par deux coe¢ cients nuls etc. Une ligne a tous ses
coe¢ cients nuls sauf le dernier.
Et donc en permutant convenablement les lignes (en multipliant par une matrice P� bien choisie) on obtient
une matrice triangulaire supérieure.
Finalement, si on note T le produit de toutes les transvections, alors on a bien T 2 TU+n et P�TA = V :
triangulaire supérieure
Et donc en notant U = T�1 et � = ��1 on a

A = UP�V

avec U 2 TU+n :
(b) Soit A 2 Gln (K) ; supposons que l�on a A = UP�V = U 0P�0V 0 avec U;U 0 2 TU+n et V; V 0 2 T+n : On a

V V 0�1 = P�1� U�1U 0P�0

Et V V 0�1 2 T+n et U�1U 0 2 T+n donc la question 15 nous dit que � = �0:

17. A =
�
a b
c d

�
si c = 0 alors la décomposition de Bruhat de A est A = I � Pid �A

Si c 6= 0;
�
1 �
0 1

��
a b
c d

�
=

�
a+ �c b+ �d
c d

�
On choisit � = �a

c
et on obtient �

1 �
0 1

��
a b
c d

�
=

�
0 b� ad

c
c d

�
En mupltipliant par P1;2 on obtient

P1;2

�
1 �
0 1

��
a b
c d

�
=

�
c d
0 bc�ad

c

�
=

�
c d
0 � 1c

�
et �nalement �

a b
c d

�
=

�
1 a

c
0 1

�
P1;2

�
c d
0 � 1c

�
18.

(a) Si A satisfait (E1) alors A est le produit de deux matrices inversibles donc elle est inversible.
Si A satisfait (E2) ; le mineur n�n est le déterminant de A donc si il est non-nul, la matrice A est inversible.

(b) On note 0i;j la matrice nulle de Mi;j (C),
8A;A0 2Mk (C) ;8C;C 0 2Mn�k (C) ;8B 2Mn�k;k (C) ;8B0 2Mk;n�k (C) ; on a�

A 0k;n�k
B C

��
A0 B0

0n�k;k C 0

�
=

�
AA0 AB0

BA0 BB0 + CC 0

�

Si A et A0 sont inversible alors le mineur d�ordre k de
�
A 0k;n�k
B C

��
A0 B0

0n�k;k C 0

�
est non-nul.

Si T 2 T�n (C) ; on peut écrire T =
�
A 0k;n�k
B C

�
avec A inversible car tous les éléments de sa diagonale

principale sont non-nuls

Si T 0 2 T+n (C) ; on peut écrire T 0 =
�

A0 B0

0n�k;k C 0

�
avec A0 inversible car tous les éléments de sa diagonale

principale sont non-nuls.
Et donc le mineur d�ordre k de TT 0 est non-nul. Et c�est vrai pour toutes les valeurs de k: Donc TT 0

satisfait (E2) :
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(c) Si n = 1 c�est évident.
Supposons le résultat vrai pour tous les entiers < n: Et soit A 2Mn (C) dont tous les mineurs principaux
sont non-nuls.
Notons B la matrice extraite de A en prenant les n � 1 premières lignes et n � 1 premières colonnes.
Donc tous les mineurs principaux de B sont non nuls. Donc on peut écrire B = TT 0 avec T 2 T�n (C) et
T 0 2 T+n (C)

Donc A =
�
TT 0 C
L an;n

�
avec L 2M1;n�1 (C) et C 2Mn�1;1 (C)

On a le produit par blocs : �
T 0
X �

��
T 0 Y
0 1

�
=

�
TT 0 TY
XT 0 �+XY

�
Si on pose X = LT 0�1 et Y = T�1C on obtient�

T 0
LT 0�1 �

��
T 0 T�1C
0 1

�
=

�
TT 0 C
L �+ LT 0�1T�1C

�
Et donc si on choisit � = an;n � LT 0�1T�1C alors�

T 0
LT 0�1 �

��
T 0 T�1C
0 1

�
= A

et donc A satisfait (E2) : Ce qui permet de conclure la récurrence.

19. Soit 'k : Mn (C) ! C qui a une matrice associe son mineur principal d�ordre k: Alors 'k est une fonction
polynomiale à plusieurs variables appliquée aux coe¢ cients de A:

Donc 'k est continue. Et ainsi,'
�1
k (C�) est un ouvert de Mn (C) :

Une matrice A satisfait (E2) si et seulement si elle appartient à
\

k2[[1;n]]

'�1k (C�).

Comme une intersection �nie d�ouverts est un ouvert. L�ensembles des matrices qui véri�ent la condition (E2)
est un ouvert.

20. Remarque ��1 = � car 8k 2 [[1; n]] ; � � � (k) = � (n� k + 1) = n� (n� k + 1) + 1 = k:

(a) Soit A =

0BBBBBB@

a1;1 a1;2 � � �
0 a2;2 � � �
...

. . .
. . . � �

... 0
. . .

. . . �
0 � � � � � � 0 an;n

1CCCCCCA 2 T
+
n (C) :

Alors P� (A) =

0BBBBBB@

0 � � � � � � 0 an;n
... 0 � � �
... � � � �
0 a2;2 � � �
a1;1 a1;2 � � �

1CCCCCCA et donc

P� (A)P� =

0BBBBBB@

an;n 0 � � � � � � 0

� . . .
. . . 0

...

� � . . .
. . .

...
� � � a2;2 0
� � � a1;2 a1;1

1CCCCCCA 2 T
�
n (C) :

Donc P�T+n (C)P� � T�n (C) : Comme P�1� = P��1 = P� Alors quelque soit T 2 T�n (C) on a
T = P� (P�TP� )P� et P�TP� = P�1� TP�1� 2 T+n (C) en inversant le calcul précédent.
Donc P�T+n (C)P� = T

�
n (C) :

(b) P�T+n (C)P�T
+
n (C) = T

�
n (C)T

+
n (C) qui est l�ensemble des matrices qui véri�ent (E1) : C�est donc l�ensemble

des matrices qui véri�ent (E2) (question 18.b.) et donc c�est un ouvert (question 19.).
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(c) P�T+n (C)P�T
+
n (C) est l�ensemble des matrices qui véri�ent (E2) :

Soit A 2 GLn (C) ; et k 2 [[1; n]] ; supposons que le mineur principal d�ordre k de A soit nul. Alors le
mineur principal de A� 1

pIn est une expression de la forme

akp
k + ak�1p

k�1 + � � �+ a0
pk

où les coe¢ cients a0; a1; � � � ; ak sont des expressions polynomiales en les coe¢ cients de A:
Or un polynôme de degré k admet au maximum k racines donc pour p su¢ samment grand ce mineur est
non nul. Donc '�1k (C�) est un ouvert dense de GLn (C) :
Comme une intersection �nie d�espace dense est dense on a que l�ensemble des matrices qui véri�ent (E2)
est dense.

(d) L�application A! P�A est continue (on change l�ordre des lignes) et est égale à sa réciproque car P 2� = In:
Donc c�est un homéomorphisme.

(e) T+n (C)P�T
+
n (C) est l�image de P�T

+
n (C)P�T

+
n (C) par l�homéomorphisme de la question précédente.

Donc comme P�T+n (C)P�T
+
n (C) est un ouvert dense, T

+
n (C)P�T

+
n (C) également.[

�2Sn
� 6=�

T+n (C)P�T
+
n (C) = GLn (C) nT+n (C)P�T+n (C) c�est donc un fermé d�intérieur vide.

PARTIE IV

21. 8g 2 GL (E) ; la famille (g (ei))i2[[1;n]] est une base.
Si g = idE ; g: (ei)i2[[1;n]] = (ei)i2[[1;n]]

8g; h 2 GL (E) ; h:
�
g: (ei)i2[[1;n]]

�
= h: (g (ei))i2[[1;n]] = (h (g (ei)))i2[[1;n]]

= (h � g (ei))i2[[1;n]] = (h � g) : (ei)i2[[1;n]]

Donc, on a bien une action de groupe de GL (E) sur �:

Soit (ei)i2[[1;n]] 2 �, si g: (ei)i2[[1;n]] = (ei)i2[[1;n]] alors 8i 2 [[1; n]] ; g (ei) = ei donc g = id:
Donc Stab(ei)i2[[1;n]] = fidEg donc l�intersection de tous les stabilisateurs est fidEg et l�action est �dèle.

Soit (ei)i2[[1;n]] et (fi)i2[[1;n]] deux éléments de �; alors il existe une application linéaire u telle que 8i 2
[[1; n]] ; u (ei) = fi: Et comme l�image d�une base est une base u 2 GL (E) : Donc l�action est transitive.

22. Soit (Ei)i2[[1;n]] un drapeau total. Pour tout g 2 GL (E) ;dim g (Ei) = dim (Ei) = i et 8i 2 [[0; n� 1]] ; Ei � Ei+1
donc 8i 2 [[0; n� 1]] ; g (Ei) � g (Ei+1) et l�inclusion est stricte car dim g (Ei+1) = i+ 1 > i = dim g (Ei) :
Donc (g (Ei))i2[[1;n]] est un drapeau.

Si g = id alors g: (Ei)i2[[1;n]] = (Ei)i2[[1;n]]

8g; h 2 GL (E) ; h:
�
g: (Ei)i2[[1;n]]

�
= h: (g (Ei))i2[[1;n]] = (h (g (Ei)))i2[[1;n]]

= (h � g (Ei))i2[[1;n]] = (h � g) : (Ei)i2[[1;n]]

Donc on a bien une action de GL (E) sur D:
Soient (Ei)i2[[1;n]] et (Fi)i2[[1;n]] deux drapeaux totaux alors il existe deux bases (ei)i2[[1;n]] et (fi)i2[[1;n]] telles

que (Ei)i2[[1;n]] = �
�
(ei)i2[[1;n]]

�
et (Fi)i2[[1;n]]= �

�
(fi)i2[[1;n]]

�
(question 2.)

Soit u 2 L (E) ; telle que 8i 2 [[1; n]] ; u (ei) = fi donc u 2 GL (E) et on a alors
8k 2 [[1; n]] ; u (Vect (e1; :::; ek)) = Vect (f1; :::; fk) et donc

8k 2 [[1; n]] ; u (Ek) = Fk et donc u:
�
(Ei)i2[[1;n]]

�
=(Fi)i2[[1;n]]. Finalement, l�action est transitive.
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8B = (ei)i2[[1;n]] 2 �;8g 2 GL (E)

� (g:B) = �
�
g: (ei)i2[[1;n]]

�
= �

�
(g (ei))i2[[1;n]]

�
= (Vect (g (e1) ; :::; g (ei)))i2[[1;n]]

= (g (Vect (e1; :::; ei)))i2[[1;n]] car g est inversible.

= g: (Vect (e1; :::; ei))i2[[1;n]] = g:� (B) :

23. 8g 2 GL (E) ; g:� (B0) = � (B0) si et seulement si 8k 2 [[1; n]] ; g (Vect ("1; :::; "k)) = Vect ("1; :::; "k) ce qui
équivaut à dire que la matrice de g dans la base ("1; :::; "n) est triangulaire supérieure.

Donc Stab�(B0) = T
+
n (K) :

24. 8M 2 GLn (K) ;M�1M = In 2 T+n (K) donc R est ré�exive.
8M;N 2 GLn (K) ; si M�1N 2 T+n (K) alors

�
M�1N

��1
= N�1M 2 T+n (K) donc R est symétrique.

8M;N;P 2 GLn (K) ; si M�1N 2 T+n (K) et P�1M 2 T+n (K) alors P�1M �M�1N = P�1N 2 T+n (K) donc
R est transitive.
Donc R est une relation d�équivalence.

25.

(a) Soient M;N 2 GLn (K) telles que �M = �N c�est à dire telles que M�1N 2 T+n (K) :
Il faut montrer que M:� (B0) = N:� (B0)
Or, M�1N 2 Stab�(B0) donc

�
M�1N

�
:� (B0) = � (B0) donc M�1: (N:� (B0)) = � (B0)

Donc N:� (B0) =M:� (B0) et '
�
�M
�
= '

�
�N
�
: Donc ' est bien dé�nie.

(b) Soient M;N 2 GLn (K) si '
�
�M
�
= '

�
�N
�
alors M:� (B0) = N:� (B0) mais alors

�
M�1N

�
:� (B0) = � (B0)

donc M�1N 2 Stab�(B0) = T
+
n (K) donc MRN donc �M = �N: Donc ' injective.

L�action de GLn (K) sur D est transitive, donc 8 (Ei)i2[[1;n]] 2 D;9M 2 GLn (K) ;M:� (B0) = (Ei)i2[[1;n]]
donc ' est surjective.
Finalement, ' est bijective.

26. 8X;Y 2 GLn (K) ; '
�
XY

�
= XY:� (B0) = X: (Y:� (B0)) = X:'

�
�Y
�
:

27.
�
�X; �Y

�
= X:

�
In; X�1Y

�
Appliquons la décomposition de Bruhat à X�1Y

Donc il existe T1 2 TU+n (K) ; P� : matrice de permutation et T 2 T+n (K) tels que
X�1Y = T1P�T

Donc
�
�X; �Y

�
= X:

�
In; T1P�T

�
.

Or In = T1 car InRT1: Donc
�
�X; �Y

�
= X:

�
T1; T1P�T

�
= X:

�
T1:
�
In; P�T

��
= XT1:

�
In; P�T

�
:

Et comme, P�TRP� on a P�T = P� et �nalement�
�X; �Y

�
= XT1:

�
In; P�

�
Supposons XT1:

�
In; P�

�
= XT 01:

�
In; P�0

�
C�est à dire

�
XT1; XT1P�

�
=
�
XT 01; XT

0
1P�0

�
donc XT1P� = XT 01P�0

donc XT1P�RXT 01P�0 donc (XT1P�)
�1
XT 01P�0 2 T+n (K)

Donc P�1� T�11 T 01P�0 2 T+n (K) d�après la question 15. on a � = �
0
:

28. Soit
�
�X; �Y

�
2 GLn (K) =T+n (K)�GLn (K) =T+n (K) d�après la question précédente il existe une permutation �

unique telle que
�
�X; �Y

�
soit dans l�orbite de

�
In; P�

�
:

Supposons que
�
In; P�

�
et
�
In; P�0

�
soient dans la même orbite. Alors il existe A 2 GLn (K) telle que

A:
�
In; P�

�
=
�
In; P�0

�
c�est à dire

�
A;AP�

�
=
�
In; P�0

�
Donc ARIn donc A 2 T+n (K) et P�1�0 (AP�) 2 T+n (K) donc d�après la question 15 on a � = �

0
:

Comme P� = P�0 si et seulement si � = �0 on peut conclure qu�il y a autant d�orbites que de permutation � et
donc il y en a n!

FIN
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