Correction Agrég interne epl 2020

Partie 1
1. V5 € [[1,n]], la famille (e1,...,ej41) est libre car c’est une sous famille de la base (e1,...,e,). Donc ej11 ¢
Vect (e1,...,e5) donc Vect (eq,...,e;) & Vect (er,...,ej41) donc E; & Ejyq.
donc {0} & By & ... & By, donc la famille (Ej),_ ., est un drapeau total.

2.0na{0}CF <..CFE,=FE.
Vje[[l,n]],dimEj;; —dimE; > 1
Et "7 (dim Ej 1 — dim E;) = dim E,, — dim Ey = n
Donc Vj € [[1,n]],dim Ej4; — dim E; = 1.
On a dim Ey =1 on choisit e; € E1\{0g} et Ey = Vect (e;) .
Ensuite dim Fy = 2 donc on choisit e tel que (e, e2) soit une base de Es.
Ainsi de suite, pour tout j dans [[2,n]] on utilise le théoréme de la base incompléte pour compléter la base de
E; = (e1,...,e;) en (e1,...,ej+1) . Et on obtient une base adaptée au drapeau.
3. Soit (ey, ..., e,) une base adaptée au drapeau total.
Le procédé d’orthonormalisation de Gram-Schmidt nous donne une base orthonormée (fi, ..., f,) vérifiant Vj €
[[1,n]],Vect (fr,..., fj) = Vect (e1,...,e;) = Ej. Donc c’est une base orthonormée adaptée au drapeau total.
4. u diagonalisable donc il existe une base (ej,...,e,) de E formée de vecteurs propres de u. Notons pour tout
jelll,n]],E; =vect (e1,...,e;).
Alors (Ej)< <, est un drapeau total.
De plus Vj € [[1,n]],u(e;) € Ke; (car e; est un vecteur propre)
Donc Vj € [[1,n]] ,u(e;) € Ej
Donc Vj € [[1,n]],VEk € [[1,4]] ,u (ex) € Ex, C E;

Finalement, u (E;) = u (vect (e1, ...,e;)) C Ej donc ce drapeau est stable par w.

(a) Soit z tel que u"~1 (z) # 0g. Soit ag,a,...,a,_1 € K tel que
aox + aru (z) + ... + ap_u" "t (z) = 0p

On applique u™~! a cette égalité, on obtient agu™ ! () = O donc ag = 0. Par récurrence, si on suppose
que ap = a; = ... = a; = 0 alors en appliquant u™~J on obtient ajﬂun’l () =0g et donc a;j41 = 0.
Finalement, la famille (z,u (z),u? (z),...,u™ ! (z)) est libre et donc toute sous famille est libre également.
(b) Soit i € [[1,n—1]] et y € keru’ alors v (y) = u (u’(y)) = w(0) = 0 donc y € keru'*'. On a donc
ker u’ C ker u't!.
Supposons ker u’ = ker v
Si z € keru™ avec m > i alors u™ 7! (2) € keru'™! = keru’ donc u’ (u™~*"! (2)) = 0 donc ™! (z) =
0g. On en déduit ker u™ = ker ™!, En itérant, on obtient Vm > 4, ker u™ = ker u’.
Or, keru” = E et keru' # E car u"~! # 0r,g) donc notre hypothese et absurde et keru’ & ker u'*1.

Donc la famille (ker ui)

+1

0<i<n est un drapeau total de F.

Vi € [[1,n]],Vy € keru',u’ (u(y)) = u (u'(y)) = u(0g) = 0 donc u(y) € keru'. et donc ce drapeau est
stable par u.

La famille (z,u (z),u?(z),...,u" ! (z)) est une famille libre de n vecteurs dans un espace de dimension n
c’est donc une base.

De plus, si on note e; = u"7 ()

On au(e) =u™ (z) = 0p, u® (e3) = 0, u® (e3) = O et Vj € [[1,n]], v (¢;) = u™ () = 0.

vj € [[1nl] Yk € [[L 5], (ex) = w~* (u* (ex)) = ¥ (0p) = 0.

Donc Vj € [[1,n]],vect (e1, ...,ej) C keru? or ces deux espaces sont de la méme dimension j donc ils sont égaux

et la base (ey, ..., e,) est adaptée au drapeau (ker ui)0<i<n )



6. Supposons qu'il existe un drapeau total stable par u et notons (e, ..., e,) une base de E adaptée a ce drapeau.
Vj € [[1,n]],u(vect (€1, ...,e;)) C vect (e1, ..., €5)
En particulier,Vj € [[1,n]],u(e;) € vect (e1, ...,e;) donc la matrice de u dans la base (e, ..., e,) est triangulaire
supérieure. Donc u est trigonalisable.
Réciproquement, soit (e1,...,e,) une base qui trigonalise u. Et soit (£}), <j<n le drapeau total défini par E; =
vect (e1,...,€;5) .
Comme la matrice de u dans la base (eq, ..., e,,) est triangulaire supérieure, on a Vi € [[1,n]],u (e;) € vect (e1, ..., €;)
et donc u (E;) C E;. Donc ce drapeau est stable par .

7. Si u est trigonalisable il existe un drapeau total stable par u, et comme E est euclidien, on peut trouver une
base orthonormée qui est adaptée a ce drapeau et donc il existe une base orthonormée dans laquelle la matrice
de u est triangulaire supérieure.

Partie 11

8. Soit H < G.

(a) Montrons que * est bien définie
C’est a dire que si g1H = k1 H et goH = koH alors g1goH = k1koH.
Supposons kl_lgl € H et kz_lgg eH
Comme H est distingué k! (k;l_lgl) ko€ H
done (k3 'ky 'giko) (k3 'g2) € H
donc ky 'k 'g1g2 € H
donc (kyks) ™" (g192) € H
Et % est bien définie.
Montrons que % est associative.
V91,92,93 € G,

(91H) x ((92H) * (95H)) = (91H)*(9295H)
= 91(9293) H = (9192) 93H
= (9192H) * (93H)
= ((1H)x (92H)) * (95H)

Vg e G,(gH)* (1cH) =g.1¢H = gH = (1gH) x (9H) donc 1¢H = H est un élément neutre.
Vg € G,(gH) (g’lH) =1gH = H et (g’lH) x (gH) = H donc g~ H est le symétrique de gH.
Donc (G/H,*) est un groupe.

(b) La surjectivité est évidente par construction.
Vg1,92 € G, (9192) = 192 H = (g1 H) % (92H) = 7 (g1) * 7 (g2) -
Donc 7 est un morphisme de groupe surjectif.

9. Notons que si A = (a;,;), B = (b;;) et C = (¢;,;) sont trois matrices de T, (K) et si C = AB alors Vi €
[[1,n]], ciyi = aiibig.

(a)

e La matrice I, € TU," (K).

e Soit A, B € TU,f (K). Notons C = (¢; ;) = AB.
Ona,Vie[[l,n]],a;; =b;; =1donc Vi€ [[1,n]],¢;; = 1.
Donc TU,! (K) est stable par multiplication.

e Soit A € TU,  (K) soit B = (b; ;) l'inverse de A dans T} (K).
On aVi € [[1,n]],a;; =1l et Vi € [[1,n]],a:,:b;; = 1.

Donc B € TU,f (K)
Finalement, TU,} (K) est un sous-groupe de 7.} (K).
Soit A = (a;;) € TU,f (K) et P = (p;,; ) € Tf (K). Notons D = (d; ;) = P"'AP € T, (K).
Vie [[1,n]],di; = ﬁai,ipi,i =a;; = 1. Donc P7'AP € TU,S (K).
Donc TU;F (K) < T,f (K).



(b) Tl existe des matrices trigonalisables non-triangulaires.

. 1 1 . 1 1
Parexemple,51A—<0 1>et51P—<1 2)alors

- (50
- <_31 _41>¢TU;(K).

donc TU,F (K) n’est pas un sous-groupe distingué¢ de GL,, (K) pour n > 1.

10. Il existe un élément gy € G tel que Vo € G,z € H ou = € goH.

11.

Size HVhe Ha ‘he € H.

Si xz € goH, notons x = gok avec k € H.

Vh € H,z 7 ha = k™ gy " hgok.

Pour avoir x~'hz € H il suffit de montrer que go_lhgo € H.
Or VYh € H, hgy € G donc

e soit hgg € H mais alors gg € H ce qui n’est pas possible car on doit avoir goH # H.
e soit hgy € goH donc go_lhgo € H.

Donc H < G.
Preuve alternative (Merci & Maximilien Chapuy) :

Vg e Gsig¢ H alors G=HUgH, en effet gH # H il n’y a que deux classes.

Par ailleurs, HgN H = () car g ¢ H. Donc Hg C gH or ces deux ensembles ont le méme cardinal donc ils sont
égaux.

Ainsi, Vg € G,Hg = gH, donc H < G.

(a)A4:A3><A:<01 é)x(? 7)1):((1) ?):IZ

Donc A™' = A% € A et ¥n € N, A" = A7 ol g est le reste de la division de n par 4 et A™" = (47!)" =
A3 e A
Donc Vn € Z, A™ € A.
0 1 0 1
2 _ _
B_(1 o><1 0)‘12

Donc B! = B et Vn € Z, B> = I, et B>"*! = B. Donc Vn € Z,B" € A.

BA=A3BeA : BA? = A3BA=AB=A2Bec A : BA3 = A3BA? = ASBA = A2BA = ASB =
AB € A.

(AB)A=A(BA)=A'B=BeA

(AB)A?=BAe€ A : (AB) A3 = BA? € A.

Ainsi de suite on montre aisément que A est stable par mutiplication et par inverse.
Donc A est un sous-groupe de GL3 (R).



12.

13.

14.

(b)

R = {I, B} car B? = I.
A = (A) U (A) B d’apres la question 10. (4) < A. Donc A/T" est un groupe a deux éléments.

Considérons ¢ : R — A/T la restriction de m & R. C’est un morphisme de groupe car 7 est un morphisme
et ¢ est bijective.

Donc A/T et R sont isomorphes.

I" est commutatif et R est commutatif (comme tous les groupes engendrés par un seul élément). Donc I x R
est commutatif mais A ne l'est pas ( BA # AB). Donc I x R et A ne sont pas isomorphes.

HgK = | | hgK = | J Hgk.
heH keK

OnaG= U HgK car g € HgK en prenant I’élément neutre de chaque coté.
geG
11 suffit donc de démontrer que Vg, g’ € G on a soit HgK N Hg'K = () soit HgK = H¢'K.
Suposons qu'il existe z € HgK N Hg'K donc © = hgk = h'¢'k’ avec h,h/ € H et k, k' dans K.
Donc g = h™*h'¢'k'k~' € Hg'K donc HgK C Hg'K de méme par le raisonnement symétrique on a
Hy'K C HgK. Donc Hg'K = HgK.

Partie 111

(a)

(b)

(a)

(b)

0 O 0 1
1 0
0 1 0
P(1,2,...,n) = 0 1
0O -« -~ 0 1 0

Vo, 7 € &, on aVi € [[1,n]],us, our (&) = uy (E.,-(i)> = Egor(s)

Donc les endomorphismes , © u, €t uyor coincident sur la base (e1,...,&,) donc ils sont égaux.

Donc P, P, = Pyo,. On en déduit P, = P, 1.

Et sio =cj...c; alors P, = Py, ... P, .

P, € O, (R) car les vecteurs colonnes de P, forment une base orthonormée, c’est la base canonique dans
un certain ordre.

Montrons que Yo € &,,,det P, = sig (o) ou sig (o) désigne la signature de 0. Or Yo € G,,,
det P, = det (50(1), ...,sg(n)) = sig (o) det (e1,...,,) = sig (o).

car le déterminant est une n-forme alternée.
Donc P, € SO, (R) & o € A,,.

T,; N)A=A+ \E; jA et E; ;A est une matrice dont seule le ligne i est non nulle et elle est égale & la j°
ligne de A.

Donc T; ; (A) A s’obtient & partir de A en faisant L; < L; + AL;.
D; (\) A s’obtient a partir de A en faisant L; «— AL;

AT; ; () s’obtient a partir de A en faisant C; «— C; + AC;

car ' (AT, ; (\) =" To; (V' A =T (V) A

AD; (\) s’obtient a partir de A en faisant C; «— AC;.



15.

16.

(¢) Soit u € L (R™) dont la matrice dans la base canonique est A
Notons C4, ..., C}, les vecteurs colonnes de A.

En supposant ¢ < j, les vecteurs colonnes de AP; ; sont w (€1) , ..., u (&5) ..., u (€5) 5 .., u(en) = C1, ..., Cy, oo, Oy oo

Donc AP; ; s’obtient & partir de A en intervertissant les colonnes C; et Cj.
Astuce 'P; ; = Pi’_j1 =P, car P j € O, (R).

P jA='P;A="("AP;;)

Donc P; jA s’obtient & partir de A en intervertissant les lignes L; et L;.

Donc AP, s’obtient a partir de A en appliquant la permutation ¢ & ses vecteurs colonnes. Et P, A s’obtient
a partir de A en appliquant la permutation o & ses vecteurs lignes.

Pour comprendre ce que signifient ces phrases il peut étre utile de regarder sur un exemple.

0 1 0
Si Pusyy= | 0 0 1
1 0 0
01 0 a b C d e f La-—l(l)
P(132)A: 0 0 1 d e f = g h 1 La-—l(z)
]. 0 O g h ’L a b C Lg—l(s)
a b ¢ 0 1 0 c a b
AP(132) = d e f 0 0 1 = f d e
g h 1 1 00 it g h

= =(Coy Cozy Cogz) )

Notons V' = (v; ;) donc si ¢ > j,v; ; =0 et v; ; # 0.

De méme on note U = (u; ;) .

On a Pa = (pi,j) ou Pij; = 61’,0(]’)

Calculons ¢ le coefficient (o (j),j) de P, V.

€= Ykt Po(i) kg = L=t So(i),o(k) Uk = Vjij 7 0-

Calculons d le coefficient (o (j),7) de UP,.

d =351 Uo () k000 (1) = o ()0 ()-

Si P,V = UP,: alors u,(jy,.(j) 7 0 donc o’ (j) > o (j).

On a montré que Vj € [[1,n]],0’ (4) > o (j) -

Or3 10" () = 2j—1d =21 0(j) donc Vj € [[L,n]], 0" () = o (4) -
(T;,; (A) A s’obtient & partir de A en faisant L; «— L; + AL;)

(a) Posons A = (a; ;). Soit k tel que a1 # 0 et Vi > k,a;1 # 0.

a1 a2 ot G1g
A P—
ag.1
0 a/n’2 .« . “ .. an’n
0 aipe a1
_ _ak—171 .. ) _a2,l _al,l —
B=Ti 1k ( o ) XX Tog ( ak,l) T g ( %1) A 0
k1
0 an72 . “ .. an’n

Tous les termes de la premiére colonne sont nuls sauf ag ;.

On choisit [ = max{i € [[1,n]] \ {k},a;2 # 0}, en multipliant & gauche par la transvection T} (_aw)
a2
(pour ¢ # k) on remplace le coefficient a; 2 par 0. Et donc on peut obtenir une matrice qui a n — 2 lignes

qui commencent par deux coefficients nuls et une ligne qui commence par un 0.

G



17.

18.

Ainsi de suite, en multipliant par des transvections T;; (A) on va finir par obtenir une matrice dont les
lignes sont échelonnées. C’est-a-dire qu'une ligne & un coefficient non-nul sur la premiére colonne, une ligne
commence par un coefficient nul, une ligne commence par deux coefficients nuls etc. Une ligne a tous ses
coefficients nuls sauf le dernier.

Et donc en permutant convenablement les lignes (en multipliant par une matrice P, bien choisie) on obtient
une matrice triangulaire supérieure.

Finalement, si on note T' le produit de toutes les transvections, alors on a bien T' € TU,S et P,LTA=V :
triangulaire supérieure

Et donc en notant U =T ' et c =77 ! on a

A=UP,V

avec U € TU,T.
(b) Soit A € Gi,, (K), supposons que 'on a A = UP,V =U'P, V' avec U,U' € TUY et V,V' € T,F. On a

VV'=t =P lUTWUP,,
Et VV'=L € T.f et U'U’ € T, donc la question 15 nous dit que o = o”.

a=(
. 16 a b\ _ (a+dc b+dd
siero. (o ) (0 )= (")

On choisit § = _¢ et on obtient
c

[QIERS

Z ) si ¢ = 0 alors la décomposition de Bruhat de A est A=1x Py x A

et finalement

7N
o
Qo
N~
I
7N
O =
—ole
N~~~
e
o
7 N\
[eniN oY
=8
|=
N~~~

(a) Si A satisfait (E;) alors A est le produit de deux matrices inversibles donc elle est inversible.
Si A satisfait (E2), le mineur n x n est le déterminant de A donc si il est non-nul, la matrice A est inversible.

(b) On note 0, ; la matrice nulle de M; ; (C),
VA, A" € M (C),VC,C" € M,,_1, (C),VYB € My,_1, (C),VB' € My, (C), on a

A Opnen A B\ [ AA AB
B C Onkac c’ o BA'" BB +CC’

!/ !/
Si A et A’ sont inversible alors le mineur d’ordre k de ( g Ok’g,_k ) ( 0 A g, ) est non-nul.
n—k,k

A Opp—k

SiT €T, (C), on peut écrire T' = ( B C

) avec A inversible car tous les éléments de sa diagonale

principale sont non-nuls
A B’

s + P ’r_
SiT' € T,f (C), on peut écrire T = ( On_p C'

) avec A’ inversible car tous les éléments de sa diagonale

principale sont non-nuls.
Et donc le mineur d’ordre k& de TT" est non-nul. Et c’est vrai pour toutes les valeurs de k. Donc TT'
satisfait (E2) .



(¢) Sin =1 c’est évident.
Supposons le résultat vrai pour tous les entiers < n. Et soit A € M,, (C) dont tous les mineurs principaux
sont non-nuls.
Notons B la matrice extraite de A en prenant les n — 1 premiéres lignes et n — 1 premiéres colonnes.

Donc tous les mineurs principaux de B sont non nuls. Donc on peut écrire B = TT" avec T € T, (C) et

T e T, (C)
!

Donc A = < T ¢

L ann

On a le produit par blocs :

) avec L € My 5,1 (C) et C € M,,_11(C)

T 0 Y . TT' TY
X « 0 1 /) \ XT' a+XY
Sion pose X = LT~ ' et Y = T~'C on obtient

T 0 T T'C\ [ TT C
LT-' « 0 1 - L o+ LT T 1C

Et donc si on choisit o = ap,, — LT'1T-1C alors

T 0 T TCN _,
LT! o o 1 )=

et donc A satisfait (Fs). Ce qui permet de conclure la récurrence.
19. Soit ¢y, : M, (C) — C qui a une matrice associe son mineur principal d’ordre k. Alors ¢, est une fonction
polynomiale & plusieurs variables appliquée aux coeflicients de A.
Donc ¢, est continue. Et ainsi ¢, ' (C*) est un ouvert de M, (C).
Une matrice A satisfait (E3) si et seulement si elle appartient a n on ' (CH).
ke[[1,n]]
Comme une intersection finie d’ouverts est un ouvert. L’ensembles des matrices qui veérifient la condition (E2)

est un ouvert.

20. Remarque 77t =71 carVk € [I,n]],7o7(k)=7(n—k+1)=n—(n—k+1)+1=k.

ap1 ai2 X X X
0 az 2 X X X
(a) Soit A = : P eTr(C).
0 0 anpn
0 0 Un,n
0 /S /X
Alors P, (A) = % x et donc
0 a2 2 X X X
a1l aip X X X
Qn,n 0 0
x 0
P. (AP, = . . . T (C
A N R
X X X a2 0
X X X a12 a1

Donc P, T, (C) P, C T,; (C). Comme P-! = P, = P, Alors quelque soit 7' € T}, (C) on a
T =P, (P,TP,)P; et P,TP, = P-'TP-! € T} (C) en inversant le calcul précédent.
Donc P, T (C)P, =T, (C).
(b) P.T;f (C)P.T,f (C) =T, (C)T, (C) quiest 'ensemble des matrices qui vérifient (E;) . C’est donc I’ensemble
des matrices qui vérifient (E3) (question 18.b.) et donc c’est un ouvert (question 19.).



(c) P.T.f (C) P T} (C) est I'ensemble des matrices qui vérifient (Ey).
Soit A € GL, (C), et k € [[1,n]], supposons que le mineur principal d’ordre k& de A soit nul. Alors le
mineur principal de A — %In est une expression de la forme

arp® + ap—1p" "+ +ag
ok

ou les coefficients ag, a1, - ,ar sont des expressions polynomiales en les coefficients de A.

Or un polynoéme de degré k admet au maximum k racines donc pour p suffisamment grand ce mineur est
non nul. Donc ¢, ! (C*) est un ouvert dense de GL,, (C).

Comme une intersection finie d’espace dense est dense on a que ’ensemble des matrices qui vérifient (E2)
est dense.

(d) L’application A — P, A est continue (on change I'ordre des lignes) et est égale & sa réciproque car P? = I,,.
Donc c¢’est un homéomorphisme.

(e) T.F (C) P.T;f (C) est I'image de P. T, (C)P.T.} (C) par 'homéomorphisme de la question précédente.
Donc comme P, T, (C) P, T,  (C) est un ouvert dense, T, (C) P,T.F (C) également.
U 7if (C©) P.T (C) = GL, (C)\T; (C) P.T;f (C) c’est donc un fermé d’intérieur vide.

ce6,
oF#T

PARTIE IV

. Vg € GL(E), la famille (g (¢e;)) | est une base.

i€[[1,n]
Si g =idg, 9. (€i)ieqn) = (€d)ieqm)

Vg, h

m

GL(E),h. (9~ (€)icqn, n]]) = h-(g(€)icng = (M (9 (€))ieqng
= (hog(€))icqing = (ho9)-(€)ieinny

Donc, on a bien une action de groupe de GL (E) sur A.
Soit (€:);eq,ny € A 81 9 (€)ieqny = (€0)icq,ny 2lors Vi € [[1,n]], g (e;) = e; donc g = id.

Donc Stabe,), ., . = {idg} donc l'intersection de tous les stabilisateurs est {idg} et action est fidele.

Soit (ei)ie[[lm]] et (fi)ign,n deux éléments de A, alors il existe une application linéaire u telle que Vi €
[[1,n]],u(e;) = fi. Et comme I'image d’une base est une base v € GL (E) . Donc l'action est transitive.

- Soit (Ei);¢(1,,,)) un drapeau total. Pour tout g € GL (E),dimg (E;) = dim (E;) = iet Vi € [[0,n —1]], E; C Eijq
donc Vi € [[0,n —1]],9 (F;) C g (E;+1) et inclusion est stricte car dimg (F;11) =i+ 1 >4 = dimg (E;) .
Donc (g (Ei));e(,ny St un drapeau.

Si g =id alors g. (E3) ;e (,n) = (Ei)ie(n,n]

Vg.h € GL(E),h. (9~ (Ei)ie[[l,n]]> =h.(g (Ei))ie[u,n]] = (h(g (Ei)))ie[[l,n]]
= (hog (Ei))ie[u,n]] = (hog). (Ei)ie[[l,n]]

Donc on a bien une action de GL (E) sur D.
Soient (Ei)iG[[l,n]] et (Fi)ie[[l,n]
ae (E:)ieqr oy = 0 (i) ¢ (Fieqroy =0 ((i)iequn ) (auestion 2.

Soit u € L (E), telle que Vi € [[1,n]],u(e;) = f; donc u € GL (E) et on a alors
VEk € [[1,n]],u(Vect (eq, ..., ex)) = Vect (f1, ..., fx) et donc

| deux drapeaux totaux alors il existe deux bases (€;);c(1, €t (f:) telles

i€[[1,n]]

Vk € [[1,n]] ,u (Ex) = Fy et donc w. ((Ei)ie[[l,n]]> = (F%)eq1,n))- Finalement, I'action est transitive.



6(9-B) = 0 (9 16 1, n]]) =0 ((9 (ei))ie[[l,n]]>

(Vect (g (e1), -9 (€))se

(9 (Vect (e1, ..., €:)));e(1,n)) Ccar g est inversible.
= g-(Vect (€1,...,€i));e(1,n) = 9-0 (B).-

23. Vg € GL(E),g.0(By) = 6 (Bo) si et seulement si Vk € [[1,n]], g (Vect (e1,...,er)) = Vect (e1,...,ex) ce qui
équivaut a dire que la matrice de g dans la base (g1, ...,&,) est triangulaire supérieure.

Donc Stabsg,) = T,5 (K).
24. VM € GL, (K),M~*M = 1I,, € T,] (K) donc R est réflexive.
VM,N € GL, (K), si M~N € T;f (K) alors (M*IN)f1 = N~"'M e T} (K) donc R est symétrique.

VM,N,P € GL, (K), si M~IN € T, (K) et P M e T.f (K) alors P 'MxMIN=PINEe T, (K) donc
R est transitive.

1€[[

Donc R est une relation d’équivalence.
25.

(a) Soient M, N € GL,, (K) telles que M = N c’est a dire telles que M !N € T} (K).
11 faut montrer que M.6 (By) = N.J (By)
OI‘, M-IN € Stabg(Bo) donc (MilN) ) (Bo) =6 (Bo) donc M. (N5 (Bo)) =6 (Bo)
Donc N.6 (By) = M.6 (Bo) et ¢ (M) = ¢ (N). Donc ¢ est bien définie.
(b) Soient M,N € GL, (K) si ¢ (M) = ¢ (N) alors M.§ (By) = N.§ (By) mais alors (M ~'N) .6 (By) = 6 (Bo)
donc M~'N € Stabs(p,) = T,y (K) donc MRN donc M = N. Donc ¢ injective.

L’action de GLy (K) sur D est transitive, donc V (E;),¢(1 ., € D, IM € GLy, (K), M.0 (Bo) = (Ei) e,
donc ¢ est surjective.
Finalement, ¢ est bijective.

26. VX,Y € GL, (K),¢ (XY) = XY (By) = X. (V.6 (By)) = X0 (V) .

27. ()_( , Y) = X. (E, ﬁ) Appliquons la décomposition de Bruhat & X~ 'Y
Donc il existe Ty € TU,! (K), P, : matrice de permutation et T' € T} (K) tels que
XY =T\P,T
Donc (X,Y) = X. (I, i B T).
Or I, =Ty car I, RTy. Donc (X,Y) = X. (Ty, 1P, T) = X. (Ty. (I,, P,T)) = XT. (I, P, T) .
Et comme, P,TRP, on a P,T = P, et finalement
(X.Y) = XT\. (.. B,)

Supposons XT7. (E, P70) = XTj. (E, PT,/)
Clest a dire (XT7, XT1 ) = (XT{,XT{PJ/) donc XT1 P, = XT| P,/

donc XT,P,RXT!P,, donc (XT\P,) ' XT!P, € T} (K)
Donc P; YT T} P, € TiF (K) d’apres la question 15. on a0 = o .

28. Soit (X,Y) € GL, (K) /T,} (K) x GL,, (K) /T,; (K) d’aprés la question précédente il existe une permutation o
unique telle que (X , }7) soit dans ’orbite de (E, PT,) .
Supposons que (ITL, E) et (E, Pig/) soient dans la méme orbite. Alors il existe A € GL, (K) telle que
A (In, Py) = (In, Por) c'est a dire (A, AP,) = (I, Py)
Donc ARZ,, donc A € TF (K) et P.,' (AP,) € T;f (K) donc d’aprés la question 15 on a o = 0.

Comme P, = P,/ si et seulement si 0 = ¢’ on peut conclure qu’il y a autant d’orbites que de permutation o et
donc il y en a n!

FIN



