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Questions préliminaires

1)a) Puisque C est algébriquement clos, P admet au moins une racine, donc :
ρ(P ) ⩾ 1.

Puisque le produit Q des X − z, où z est racine de P , divise P , on a :
ρ(P ) ⩽ deg(P ).

On a : ρ(P ) = 1 si et seulement si P est proportionnel à (X − z)d où
d = deg(P ).

On a ρ(P ) = deg(P ) si et seulement si P est proportionnel à Q, c'est-à-dire
que toutes les racines de P sont simples.

1)b) Puisque tout polynôme est scindé sur C, P est proportionnel au poly-
nôme

∏
z∈Rac(P )

(X−z)µP (z). Ainsi deg(P ) =
∑

z∈Rac(P )

µP (z) =
∑
z∈C

µP (z), puisque

µP (z) = 0 pour tout z qui n'est pas racine de P .

2) Si Rac(P ) ∩ Rac(Q) n'est pas vide alors il existe z tel P (z) = 0 et
Q(z) = 0 ; le polynôme X − z divise P et Q donc P et Q ne sont pas premiers
entre eux.

Réciproquement si P et Q ne sont pas premiers entre eux alors P ∧Q n'est
pas constant donc possède au moins une racine z puisque le corps de base est
C. Alors z est dans Rac(P ) ∩ Rac(Q) qui n'est donc pas vide.

On a prouvé par contraposition les deux implications.

3) Il su�t de considérer trois nombres complexes distincts α, β, γ et P =
(X − α)(X − β), Q = (X − β)(X − γ), R = (X − γ)(X − α).

*****
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Partie I. Inégalité de Mason

1)a) Dire que A et B sont premiers entre eux revient à dire qu'il n'ont au-
cune racine commune. Mais si z est racine de A et de B, z est aussi racine de
C puisque C(z) = −A(z)−B(z), ce qui est contraire à l'hypothèse. Donc A et
B sont premiers entre eux. Il en est de même de A et C et de B et C.

1)b) D'après 2a) les ensembles Rac(A), Rac(B) et Rac(C) sont deux à deux
disjoints. Chacun d'eux est inclus dans Rac(ABC).

Réciproquement si (ABC)(z) = 0 le produit A(z)B(z)C(z) est nul donc
l'un des termes de ce produit est nul. C'est dire que Rac(ABC) est inclus dans
Rac(A) ∪ Rac(B) ∪ Rac(C).

2)a) On a D = AB′ −BA′ = (−B − C)B′ −B(−B′ − C ′) = BC ′ − CB′,
puis BC ′ − CB′ = (−A− C)C ′ − C(−A′ − C ′) = CA′ −AC ′.

2)b) Supposons par l'absurde D = 0. Alors AB′ = A′B.
Puisque A est premier avec B, d'après le théorème de Gauss, il divise A′ ce

qui n'est possible que si A′ est nul donc A est constant. De même B et C sont
constants donc d = 0 ce qui est contraire à l'hypothèse.

3)a) D'après l'ordre imposé sur (A,B,C), deg(A) = d.
Puisque A = −(B + C), on a deg(B + C) = deg(A) = d.
D'une part on a degB ⩽ d ; d'autre part, comme deg(C) ⩽ deg(B), on a

d = deg(B + C) ⩽ deg(B) ; donc deg(B) = d.

3)b) Notons aXd le terme directeur de A et cXd′
celui de C ; a et c sont

des complexes non nuls. Alors D = CA′ −AC ′ = ac(d− d′)Xd+d′−1 + · · ·.
Si d′ < d, alors ac(d− d′) n'est pas nul et le degré de D est d+ d′ − 1.
Si d′ = d, alors ac(d − d′) = 0 et le coe�cient de Xd+d′−1 dans D est nul ;

donc le degré de D est au plus d+ d′ − 2.

4)a) Par exemple A(z) = 0. Posons k = µA(z). Par hypothèse k ⩾ 1.
Par dé�nition A = (X − z)kA1 où A1 est un polynôme tel que A1(z) ̸= 0.
Puis D = AB′ −BA′ = (X − z)kA1B

′ − (X − z)kBA′
1 − k(X − z)k−1BA1.

Ainsi D = (X − z)k−1D1 où D1 = −kBA1 + (X − z)(A1B
′ −BA′

1).
Comme z n'est racine ni de A1 ni de B, D1(z) n'est pas nul.
Donc µD(z) = µA(z)− 1.
La preuve est identique pour B et C.
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4)b) Notons Z le complémentaire dans C de Rac(ABC).
On a deg(D) =

∑
z∈C

µD(z) =
∑
z∈Z

µD(z) +
∑

z∈Rac(ABC)

µD(z).

D'abord
∑
z∈Z

µD(z) est positif et est nul si et seulement si D ne possède

aucune racine autre que celles de A, B ou C.
D'après 1)b), on a :

∑
z∈Rac(ABC)

µD(z) =
∑

z∈Rac(A)

µD(z) +
∑

z∈Rac(B)

µD(z) +∑
z∈Rac(C)

µD(z).

Soit P l'un des trois polynômes A, B ou C.
D'après a), on a :

∑
z∈Rac(P )

µD(z) =
∑

z∈Rac(P )

(µP (z)− 1) = deg(P )− ρ(P ).

Ainsi
∑

z∈Rac(ABC)

µD(z) = 2d+ d′ − (ρ(A) + ρ(B) + ρ(C)).

Donc deg(D) ⩾ 2d+ d′ − (ρ(A) + ρ(B) + 1ρ(C)).

5) En réunissant les résultats de 3)b) et 4)b) il vient : ρ(A)+ρ(B)+ρ(C) ⩾
2 + d si d′ = d, 1 + d si d′ < d. Donc l'inégalité (R) est toujours véri�ée.

6) Dans la preuve du 4)b), on voit que deg(D) = 2d+ d′ − (ρ(A) + ρ(B) +
ρ(C)) si et seulement si D ne possède aucune racine autre que celles de A, B ou
C. D'après 3c) on voit que deg(D) = d + d′ − 1 si et seulement si d′ < d. Ces
deux condtions sont nécessaires et su�santes pour que l'inégalité (R) soit une
égalité.

*****

Partie II. Cas d'égalité dans l'inégalité de Mason

1) C'est une conséquence de : deg(A+B) < d.

2) Nécessairement : A = X − α et B = β − X où α et β sont distincts
puisque A et B n'ont pas de racine commune. Puis C = α− β.

Réciproquement on a bien ainsi : d = 1, ρ(A) + ρ(B) + ρ(C) = 2 = 1 + d.

3) On a A = (X−α)d pour un certain complexe α et C = λ pour un certain
complexe non nul λ. Donc B = −(X − α)d − λ.

Ainsi construits, A, B et C sont premiers entre eux. Donc 1 + d ⩽ ρ(A) +
ρ(B) + ρ(C).

Mais comme ρ(B) ⩽ d, on a ρ(B) = d.
On en déduit sans calcul que les racines de B sont simples.
Les solutions sont ((X − α)d,−(X − α)d − λ, λ).
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4) On a A = (X − α)d et B = −(X − β)d pour certains α et β distincts.
Donc C = (X − β)d − (X − α)d.
Ainsi construits, A, B et C sont premiers entre eux.
Donc 1+d ⩽ ρ(A)+ρ(B)+ρ(C), donc ρ(C) ⩽ d−1, mais comme deg(C) ⩽

d− 1 on a ρ(C) = d− 1.
On en déduit sans calcul que les racines de C sont simples.
Les solutions sont ((X − α)d,−(X − β)d, (X − β)d − (X − α)d).

5) Si d = 2 il faut ρ(A) + ρ(B) + ρ(C) = 3, donc :
• ou bien ρ(A) = ρ(B) = ρ(C) = 1 et on retrouve le 4) : (A = (X−α)2, B =
−(X − β)2, C = (X − β)2 − (X − α)2)(α ̸= β) ;

• ou bien, puisque ρ(A) ⩽ ρ(B), ρ(A) = 1, ρ(B) = 2, ρ(C) = 0 et on re-
trouve le 3) : (A = (X − α)2, B = −(X − α)2 − λ, λ) ; (λ ̸= 0) .

6)a) On a deg(C) = 1 donc ρ(C) = 1 et il existe un complexe γ et un
complexe non nul λ tel que C = λ(X − γ).

Il existe un complexe α di�érent de γ tel que A = (X − α)d.
Donc −B = (X − α)d + λ(X − γ).

6)b) On a ρ(B) = d− 1. Donc B admet une racine double β autre que α et
γ et d− 2 racines simples autres que α, β et γ.

Calculons β ; on a B(β) = 0 et B′(β) = 0.
Donc : (β − α)d = −λ(β − γ) et d(β − α)d−1 = −λ, puis : β = dγ−α

d−1 .

On véri�e bien que β ̸= α et que β ̸= γ. En e�et : β−α = d(γ−α)
d−1 et β = γ−α

d−1 .

6)c) Ainsi A = (X−α)d, C = λ(X−γ), B = −A−C = −
(
X − dγ−α

d−1

)2

B1

où B1 est unitaire et toutes les racines de B1 sont simples.

7)a) On a ρ(A) + ρ(B) + ρ(C) = 4, ρ(A) = 2, ρ(C) = 0, donc ρ(B) = 2.
Donc pour certains α1, α2, β1, β2 distincts on a A = (X − α1)

2(X − α2) et
B = −(X − β1)

2(X − β2) et C = λ pour un certain λ ̸= 0.

7)b) On a A = (X−µ− δ)2(X−µ−α′) et B = −(X−µ+ δ)2(X−µ−β′).
On développe :
A+B = (X − µ)2(β′ − α′ − 4δ) + 2δ(α′ + β′)(X − µ) + δ2(β′ − α′) = −λ.
On en tire : β′ − α′ − 4δ = 0, β′ + α′ = 0 (car δ ̸= 0) et λ = −δ2(β′ − α′).

Finalement β′ = 2δ, α′ = −2δ, et λ = −4δ3.

7)c) On obtient les solutions :
A = (X − µ− δ)2(X − µ+2δ), B = −(X − µ+ δ)2(X − µ− 2δ), C = −4δ3,

où δ ̸= 0.
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8) On a ρ(A) + ρ(B) + ρ(C) = 4.
Nous avons quatre possibilités :
• (ρ(A), ρ(B), ρ(C)) = (1, 3, 0) : on retrouve le 3 ;
• (ρ(A), ρ(B), ρ(C)) = (1, 1, 2) : on retrouve le 4 ;
• (ρ(A), ρ(B), ρ(C)) = (1, 2, 1) : on retrouve le 6 ;
• (ρ(A), ρ(B), ρ(C)) = (2, 2, 0) : on retrouve le 7.

*****

Partie III. Une application

1) On raisonne par l'absurde et on se donne une solution (A,B,C) non
triviale où (A,B,C) sont premiers entre eux dans leur ensemble. Notons d =
max(deg(A),deg(B),deg(C). Si d = 0, alors (A,B,C) est une solution triviale
de (F) ce qui est contraire à l'hypothèse.

On a ρ(Pm) = ρ(P ) pour tout polynôme P non constant.
Comme A, B et C n'ont aucune racine commune, il en est de même pour

Am, Bm et Cm. On a : max(deg(Am),deg(Bm),deg(Cm)) = md.
Ainsi le triplet (Am, Bm, Cm) est un élément de Tmd. D'après l'inégalité de

Mason, ρ(A) + ρ(B) + ρ(C) ⩾ 1 +md.
A fortiori, puisque ρ(P ) ⩽ d si P est l'un de A, B ou C, on a 3d ⩾ 1 +md

puis 3 > m. C'est contradictoire.

2) On se ramène au cas précédent. Soit (A,B,C) une solution non triviale de
(E). Notons R le PGCD de A, B, C. On a A = RA1, B = RB1, C = RC1 où A1,
B1, C1 sont premiers entre eux dans leur ensemble et véri�ent A1+B1+C1 = 0.
D'après le 1) nécessairement A1, B1 et C1 sont des constantes non nulles λ, µ
et ν et A = λR, B = µR, C = νR, donc (A,B,C) est une solution triviale de
(E), ce qui est contraire à l'hypothèse.

*****

Partie IV. Points d'ordre �ni pour un polynôme complexe.

1) On a pour tout z de C : (P ◦Q)(z) =
n∑

j=1

ajQ(z)j = P (Q(z).

Si R est un polynôme tel que R(z) = P (Q(z)) pour tout z alors R − P ◦Q
admet une in�nité de racines et est donc le polynôme nul.

2) D'après la dé�nition donnée en préambule : X ◦Q = Q et P ◦X = P .

3) Pour tout z de C, on a : ((P ◦Q) ◦R)(z) = (P ◦Q)(R(z)) = P (Q(R(z)))
et : (P (Q ◦R))(z) = P ((Q ◦R)(z)) = P (Q(R(z))),
donc (P ◦Q) ◦R = P ◦ (Q ◦R).
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4) On a : P0 ◦ Pm = Pm ; P1 ◦ Pm = Pm+1. Soit n ⩾ 1 ; supposons établi
Pn ◦ Pm = Pn+m. Il vient :

Pn+1 ◦ Pm = (P1 ◦ Pn) ◦ Pm = P1 ◦ (Pn ◦ Pm) = P1 ◦ (Pn+m) = Pn+m+1.

5)a) Les termes directeurs de P et Q étant respectivement aXd et a′Xd′

celui de P ◦Q est a(a′)dXdd′
. Donc le degré de P ◦Q est le produit de ceux de

P et de Q.

5)b) De a) on déduit par récurrence deg(Pn) = dn où d = deg(P ).

6)a) On montre par récurrence sur l'entier k ⩾ 0 que Pkm(z) = z pour
tout k. C'est vrai pour k = 1. Si c'est vrai pour un k ⩾ 1 alors P(k+1)m(z) =
Pm(Pkm(z)) = Pm(z) = z. Donc si m divise n, z est un point �xe de Pn.

Réciproquement soit un entier n positif. Supposons que z soit un point �xe
de Pn. E�ectuons la division euclidienne de n par m : n = km+r où 0 ⩽ r < m.
Puis z = Pn(z) = Pr(Pkm(z)) = Pr(z). Ainsi z est un point �xe de Pr, donc
r = 0 d'après la dé�nition de O(z, P ). Ainsi m divise n.

6)b) On a pour tout n : Pn+m(z) = Pn(Pm(z)) = Pn(z). Donc m est
une période de la suite (Pn(z)). Si q est une période de la suite (Pn(z), alors
Pq(z) = z donc m divise q.

7) Puisque deg(P ) = d ⩾ 2, P −X admet au moins une racine z qui est un
point d'ordre 1.

8a) Les points �xes de P sont les z tels que z2 − z − a = 0. Il y en a deux
distincts sauf si le discriminant 1+ 4a est nul, c'est-à-dire a = −1/4, et dans ce
cas le point �xe est 1/2.

8b) On cherche les solutions de

u2 − a = v ; v2 − a = u ; v ̸= u.

Par di�érence puis division par v − u il vient :

u+ v = −1

et u et v sont les racines de X2 + X − a − 1. Pour a ̸= −5/4 le système
en question admet deux solutions (u, v) et (v, u). Pour a = −5/4 ce système
n'admet aucune solution car X2 +X + 1

4 admet une racine unique −1/2.
La seule valeur de a pour laquelle P n'admet aucun point d'ordre deux est

a0 = −5/4.

*****
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Partie V. Existence de points d'ordre n pour un polynôme com-
plexe.

1) On a A + B + C = 0 où A = U − V , B = −U , C = V . Toute ra-
cine commune à (A,B,C) est racine de U et de V donc A,B,C sont premiers
entre eux dans leur ensemble. De plus d = deg(U) > deg(V ) = d′ ⩾ 0. On
en déduit deg(U) = deg(U − V ) = d. On a d'après l'inégalité de Mason :
ρ(U) + ρ(U − V ) ⩾ 1 + d − ρ(V ) et puisque ρ(V ) ⩽ deg(V ) on a a fortiori :
ρ(U) + ρ(U − V ) ⩾ 1 + deg(U)− deg(V ).

2) Posons m = O(z, n). Ou bien m = n ou bien m est un diviseur strict de
n tel que Pm(z) = z. Donc (i) équivaut à (ii).

Si p est un nombre premier tel que Pn/p(z) = z alors q = n/p est un diviseur
strict de n tel que Pq(z) = z, donc (ii) implique (iii).

Si q est un diviseur strict de n tel que Pq(z) = z alors n/q est un entier
strictement supérieur à 1 ; il possède donc un diviseur premier p et n/p est un
diviseur strict de n tel que Pn/p(z) = z, donc (iii) implique (ii).

3a) Soit z une racine de Pn −X. D'après le 2), puisque z n'est pas d'ordre
n pour P , il existe un nombre premier p tel que z est une racine de Pn/p −X.
Donc Rac(Pn −X) est inclus dans la réunion des Rac(Pn/p −X) où p parcourt
l'ensemble π(n) des nombres premiers divisant n. Il en résulte que ρ(Pn − X)
est majoré par

∑
p∈π(n)

ρ(Pn/p −X).

3b) ρ(Pn/p −X) ⩽ deg(Pn/p −X) = deg(Pn/p) = dn/p.
Donc ρ(Pn −X) ⩽ σ(d, n).

4) On a deg(U) = dn − deg(∆) ; deg(V ) = dn−m − deg(∆) < deg(U). Le 1)
s'applique et donne : ρ(U) + ρ(U − V ) ⩾ 1 + dn − dn−m.

5) On a Rac(U) ⊂ Rac(Pn −X) donc ρ(U) ⩽ ρ(Pn −X) et on applique le
3)b .

6)a) On a : Pn(z) = Pn−m(z) = w, et Pn(z) = Pm(Pn−m(z)) = Pm(w) donc
Pm(w) = w.

6)b) Puisque P n'a pas d'élément d'ordre m on a : ρ(Pm −X) ⩽ σ(d,m).
Il y a donc au plus σ(d,m) complexes w tels que Pm(w) = w. Pour tout w il
y a au plus dn−m complexes z tels que Pn−m(z) = w. Donc : ρ(Pn − Pn−m) ⩽
dn−mσ(d,m).

6)c) On a Rac(U − V ) ⊂ RacPn − Pn−m) donc ρ(U − V ) ⩽ ρ(Pn − Pn−m)
et on applique le b) : ρ(U − V ) ⩽ dn−mσ(d,m).

7a) σ(d, 2) = d2/2 = d2−1 ⩽ d2−1.
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7)b) σ(d, 3) = d3/3 = d ⩽ d3−2.
σ(d, 4) = d4/2 = d2 ⩽ d4−2.
σ(d, 5) = d5/5 = d1 ⩽ d5−2.

7)c) Tous les q/p où p ∈ π(n) sont des entiers distincts compris entre 1 et
q/2.

7)d) C'est une conséquence immédiate de ce qui précède.

7)e) Soit q1 la partie entière de q/2. On majore σ(d, q) par dq1+1−1
d−1 < dq1+1 ⩽

dq/2+1. Mais q/2 + 1 ⩽ q − 2 si q ⩾ 6. La preuve est complète.

8) Comme n > m ⩾ 2, n ⩾ 3 donc σ(d, n) ⩽ dn−2, donc, d'après 5),
ρ(U) ⩽ dn−2.

Comme m ⩾ 2 on a σ(d,m) ⩽ dm−1 donc d'après 6), ρ(U − V ) ⩽ dn−1.

9) D'après 8) et 4),
on a : 1 + dn − dn−m ⩽ ρ(U) + ρ(U − V ) ⩽ dn−1 + dn−2,
donc : 1 + dn ⩽ dn−1 + dn−2 + dn−m,
puis : 1 + dn ⩽ dn−1 + 2dn−2 ⩽ 2dn−1 ⩽ dn.

Contradiction.

*****

FIN
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