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Questions préliminaires

1)a) Puisque C est algébriquement clos, P admet au moins une racine, donc :
p(P) = 1.

Puisque le produit ) des X — z, oul z est racine de P, divise P, on a :
p(P) < deg(P).

On a : p(P) = 1 si et seulement si P est proportionnel & (X — 2)¢ ou
d = deg(P).

On a p(P) = deg(P) si et seulement si P est proportionnel a @, c’est-a-dire
que toutes les racines de P sont simples.

1)b) Puisque tout polynome est scindé sur C, P est proportionnel au poly-
nome ] (X —2)#7®), Ainsideg(P)= > pup(z) = 3 up(z), puisque
z€Rac(P) z€Rac(P) z€C
wup(z) = 0 pour tout z qui n’est pas racine de P.

2) Si Rac(P) N Rac(Q) n’est pas vide alors il existe z tel P(z) = 0 et
Q(z) = 0; le polynome X — z divise P et @ donc P et () ne sont pas premiers
entre eux.

Réciproquement si P et () ne sont pas premiers entre eux alors P A ) n’est
pas constant donc posséde au moins une racine z puisque le corps de base est
C. Alors z est dans Rac(P) N Rac(Q) qui n’est donc pas vide.

On a prouvé par contraposition les deux implications.

3) 1l suffit de considérer trois nombres complexes distincts a, 8,y et P =
X -a)(X=5),Q=X-f)(X =7), R=(X—7)(X —a).
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Partie I. Inégalité de Mason

1)a) Dire que A et B sont premiers entre eux revient & dire qu’il n’ont au-
cune racine commune. Mais si z est racine de A et de B, z est aussi racine de
C puisque C(z) = —A(z) — B(z), ce qui est contraire & ’hypothése. Donc A et
B sont premiers entre eux. Il en est de méme de A et C et de B et C.

1)b) D’aprés 2a) les ensembles Rac(A4), Rac(B) et Rac(C) sont deux & deux
disjoints. Chacun d’eux est inclus dans Rac(ABC).

Réciproquement si (ABC)(z) = 0 le produit A(z)B(z)C(z) est nul donc
I'un des termes de ce produit est nul. C’est dire que Rac(ABC) est inclus dans
Rac(A4) URac(B) URac(C).

2)a) Ona D = AB' — BA' = (-B — C)B' — B(-B' — C') = BC' — CB/,
puis BC' — CB' = (—A—C)C' — C(—A' = ') = CA' — AC'.

2)b) Supposons par I'absurde D = 0. Alors AB’ = A'B.

Puisque A est premier avec B, d’aprés le théoréme de Gauss, il divise A’ ce
qui n’est possible que si A’ est nul donc A est constant. De méme B et C sont
constants donc d = 0 ce qui est contraire & I’hypothése.

3)a) D’aprés l'ordre imposé sur (4, B, C), deg(A4) =d.

Puisque A = —(B + C), on a deg(B + C) = deg(A) = d.

D’une part on a degB < d; d’autre part, comme deg(C) < deg(B), on a
d = deg(B + C) < deg(B) ; donc deg(B) = d.

3)b) Notons aX? le terme directeur de A et cX? celui de C'; a et ¢ sont
des complexes non nuls. Alors D = CA' — AC' = ac(d — d') X4+~ 4 ...

Si d’ < d, alors ac(d — d’) n’est pas nul et le degré de D est d +d' — 1.

Si d' = d, alors ac(d — d') = 0 et le coefficient de X4+4'~1 dans D est nul;
donc le degré de D est au plus d + d' — 2.

4)a) Par exemple A(z) = 0. Posons k = p14(z). Par hypothése k > 1.

Par définition A = (X — 2)¥A; oit A; est un polynome tel que A;(z) # 0.
Puis D = AB’ — BA' = (X — 2)*A1 B’ — (X — 2)*BA}, — k(X — 2)F"1BA,.
Ainsi D = (X — Z)kilDl ol D1 = 7]€BA1 + (X — Z)(AlB/ — BAII)
Comme z n’est racine ni de Ay ni de B, D1(z) n’est pas nul.

Donc pp(z) = pa(z) — 1.

La preuve est identique pour B et C.



4)b) Notons Z le complémentaire dans C de Rac(ABC).

Onadeg(D) = 3 up(:) = X puo(=)+ > pol2).
z€C 2€Z z€Rac(ABC)

D’abord ) up(z) est positif et est nul si et seulement si D ne posséde
z2€Z
aucune racine autre que celles de A, B ou C.

Daprés 1)b),ona: > pup(z)= 3 wp(z)+ > pp(z)+
z€Rac(ABC) z€Rac(A) z€Rac(B)
> mp(2)

z€Rac(C)
Soit P 'un des trois polynémes A, B ou C.

Daprés a), ona: >, up(z)= > (pp(2) —1) = deg(P) — p(P).
z€Rac(P) z€Rac(P)

Ainsi Y pp(s) =20+ d — (p(A)+ p(B) + p(C)).
z€Rac(ABC)
Donc deg(D) > 2d + d' — (p(4) + p(B) + 1p(C)).

5) En réunissant les résultats de 3)b) et 4)b) il vient : p(A)+p(B)+p(C) >
24+dsid =d,1+dsid <d. Donc l'inégalité (R) est toujours vérifiée.

6) Dans la preuve du 4)b), on voit que deg(D) = 2d +d' — (p(A) + p(B) +
p(C)) si et seulement si D ne posséde aucune racine autre que celles de A, B ou
C'. D’aprés 3c¢) on voit que deg(D) = d + d’ — 1 si et seulement si d’ < d. Ces
deux condtions sont nécessaires et suffisantes pour que I'inégalité (R) soit une
égalité.
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Partie II. Cas d’égalité dans I’inégalité de Mason

1) C’est une conséquence de : deg(A + B) < d.

2) Nécessairement : A = X —a et B = 8 — X ou « et 8 sont distincts
puisque A et B n’ont pas de racine commune. Puis C' = o — f3.

Réciproquement on a bien ainsi : d =1, p(4) + p(B) + p(C) =2 =1+d.

3) On a A = (X —a)? pour un certain complexe o et C = A pour un certain

complexe non nul A\. Donc B = —(X — a)4 — \.
Ainsi construits, A, B et C sont premiers entre eux. Donc 1 +d < p(4) +
p(B) + p(C).

Mais comme p(B) < d, on a p(B) = d.
On en déduit sans calcul que les racines de B sont simples.
Les solutions sont ((X — a)¢, —(X —a)? — X\, \).



4) Ona A= (X —a)?et B=—(X — ) pour certains « et 3 distincts.

Donc C = (X — B)4 — (X — o)

Ainsi construits, A, B et C sont premiers entre eux.

Donc 1+d < p(A)+ p(B) + p(C), donc p(C) < d—1, mais comme deg(C) <
d—1onap(C)=d-1.

On en déduit sans calcul que les racines de C' sont simples.

Les solutions sont ((X — )%, —(X — B)4, (X — B)? — (X — a)?).

5) Sid =21l faut p(A) + p(B) + p(C) = 3, donc :
e ou bien p(A) p(B) = p(C’) = letonretrouvele4) : (A= (X—a)?, B =
S(X — BP0 = (X - ) — (X —a))(a £ )
e ou bien, puisque p(A4) < (B) ( ) =1, p(B) = 2,p(C) = 0 et on re-
trouvele 3) : (A= (X —a)?2,B=—(X—a)2=X\)); (A#0) .

6)a) On a deg(C) = 1 donc p(C) = 1 et il existe un complexe v et un
complexe non nul A tel que C = A(X — 7).

Il existe un complexe « différent de 7 tel que A = (X — a)®.

Donc —B = (X — a)? + (X — 7).

6)b) On a p(B) = d — 1. Donc B admet une racine double 8 autre que « et
v et d — 2 racines simples autres que «, S et +.

Calculons 3; on a B(3) =0 et B'(8) = 0.

Donc : (8 —a)? = —\(B—7) et d(B — a)?™t = -\, puis : = L=

On vérifie bien que 8 # a et que B # . Eneffet : B—a = d('y ) etﬁ— =

2
6)c) Ainsi A = (X ~a)!, C = \(X ), B= ~A~C = - (X— 4=t) By

ol Bj est unitaire et toutes les racines de By sont simples.

7)a) On a p(A) + p(B) + p(C) = 4, p(A) =2, p(C) = 0, donc p(B) = 2.
Donc pour certains oy, ag, 31, B2 distincts on a A = (X — a1)?(X — az) et
B =—(X — 1)%(X — 32) et C' = X\ pour un certain \ # 0.

Tb)OnaAd=(X-—p—08)*(X—p—a)et B=—(X—pu+6)*(X—p-p).

On développe :

A+B=(X—p)?B —a —40) +25(a’ + ') (X —p) +62(8' —a') = =\,

Onen tire: B/ —a' —46 =0, 8 +a' =0 (car § # 0) et A = —6%(8 — o).
Finalement 8’ = 26, o/ = —26, et A = —465°.

7)c) On obtient les solutions :
A=(X—p—-8)* (X —p+28),B=—(X—p+6)*(X —p—238),C = -4,
ou § # 0.



8) On a p(A) + p(B) + p(C) = 4.
Nous avons quatre possibilités :

e (p(A4),p(B),p(C)) =(1,3,0) : on retrouve le 3;
o (p(A4),p(B),p(C)) =(1,1,2) : on retrouve le 4;
o (p(A),p(B),p(C)) =(1,2,1) : on retrouve le 6;
o (p(A4),p(B),p(C)) =(2,2,0) : on retrouve le 7.
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Partie III. Une application

1) On raisonne par l’absurde et on se donne une solution (A, B,C') non
triviale ot (A, B,C') sont premiers entre eux dans leur ensemble. Notons d =
max(deg(A),deg(B),deg(C). Si d = 0, alors (A, B,C') est une solution triviale
de (F) ce qui est contraire a I’hypothése.

On a p(P™) = p(P) pour tout polynéme P non constant.

Comme A, B et C n’ont aucune racine commune, il en est de méme pour
A™, B™ et C™. On a : max(deg(A™),deg(B™),deg(C™)) = md.

Ainsi le triplet (A™, B™,C™) est un élément de T,,4. D’aprés I'inégalité de
Mason, p(A) + p(B) + p(C) = 1 + md.

A fortiori, puisque p(P) < dsi P est 'unde A, Bou C,on a 3d > 1+ md
puis 3 > m. C’est contradictoire.

2) On se raméne au cas précédent. Soit (A, B, C) une solution non triviale de
(E). Notons Rle PGCD de A, B,C.Ona A= RA;, B= RBy,C = RC; ou 4y,
By, Cy sont premiers entre eux dans leur ensemble et vérifient A; + B +C; = 0.
D’aprés le 1) nécessairement A, By et C; sont des constantes non nulles A, u
et vet A= AR, B = uR, C = vR, donc (A, B,C) est une solution triviale de
(E), ce qui est contraire & ’hypothése.
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Partie IV. Points d’ordre fini pour un polynéme complexe.

1) On a pour tout z de C: (PoQ)(2) = > a;Q(2)7 = P(Q(z).
j=1
Si R est un polynome tel que R(z) = P(Q(z)) pour tout z alors R — P o Q
admet une infinité de racines et est donc le polynéme nul.

2) D’aprés la définition donnée en préambule : X o Q = Q et Po X = P.
3) Pour tout z de C,on a: (PoQ)oR)(z) = (PoQ)(R(2)) = P(Q(R(2)))

et : (P(Qo R))(2) = P((Q o R)(z)) = P(Q(R(2))),
donc (PoQ)oR=Po(QoR).



4) Ona: Pyo P, = P, ; Py o P, = Pp41. Soit n > 1; supposons établi
P, o P, = P,y 1l vient :
Pn+1OPTn:(PIOPn)Opm:PIO(PnOPm):Plo(Pn+m):P7z+7rL+1~

5)a) Les termes directeurs de P et ) étant respectivement aX? et a’X d
celui de P o @ est a(a’)?X . Donc le degré de P o Q est le produit de ceux de
P et de Q.

5)b) De a) on déduit par récurrence deg(P,,) = d" ou d = deg(P).

6)a) On montre par récurrence sur l'entier & > 0 que Pyp(2) = z pour
tout k. C’est vrai pour k = 1. Si c’est vrai pour un & > 1 alors P11y, (2) =
P,.(Pem(2)) = Pp(z) = z. Donc si m divise n, z est un point fixe de P,.

Réciproquement soit un entier n positif. Supposons que z soit un point fixe
de P,. Effectuons la division euclidienne de n par m : n = km+rou 0 < r < m.
Puis z = P,(2) = P(Pxm(z)) = P.(z). Ainsi z est un point fixe de P,, donc
r = 0 d’aprés la définition de O(z, P). Ainsi m divise n.

6)b) On a pour tout n : Pypm(2) = Pp(Pn(z)) = P.(z). Donc m est
une période de la suite (P,(z)). Si ¢ est une période de la suite (P,(z), alors
P,(z) = z donc m divise q.

7) Puisque deg(P) =d > 2, P — X admet au moins une racine z qui est un
point d’ordre 1.

8a) Les points fixes de P sont les z tels que 22 — z —a = 0. Il y en a deux
distincts sauf si le discriminant 1+ 4a est nul, c’est-a-dire a = —1/4, et dans ce
cas le point fixe est 1/2.

8b) On cherche les solutions de

w—a=v;v’—a=u;v#u.

Par différence puis division par v — w il vient :
u+v=-—1

et u et v sont les racines de X? + X —a — 1. Pour a # —5/4 le systéme
en question admet deux solutions (u,v) et (v,u). Pour a = —5/4 ce systéme
n’admet aucune solution car X2 + X + 1 admet une racine unique —1/2.

La seule valeur de a pour laquelle P n’admet aucun point d’ordre deux est
apg = —5/4
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Partie V. Existence de points d’ordre n pour un polynéme com-
plexe.

1)Ona A+B+C =000 A=U-V,B=-U, C =V. Toute ra-
cine commune & (A4, B, C) est racine de U et de V donc A, B, C sont premiers
entre eux dans leur ensemble. De plus d = deg(U) > deg(V) = d’ > 0. On
en déduit deg(U) = deg(U — V) = d. On a d’aprés l'inégalité de Mason :
p(U)+p(U—=V) =2 1+4+d— p(V) et puisque p(V) < deg(V) on a a fortiori :
p(U) +p(U = V) =1+ deg(U) — deg(V).

2) Posons m = O(z,n). Ou bien m = n ou bien m est un diviseur strict de
n tel que P, (z) = z. Donc (i) équivaut a (ii).

Si p est un nombre premier tel que P, ,,(2) = z alors ¢ = n/p est un diviseur
strict de n tel que P,(z) = z, donc (ii) implique (iii).

Si g est un diviseur strict de n tel que P,(z) = z alors n/q est un entier
strictement supérieur & 1; il posséde donc un diviseur premier p et n/p est un
diviseur strict de n tel que P,/,(z) = 2, donc (iii) implique (ii).

3a) Soit z une racine de P, — X. D’aprés le 2), puisque z n’est pas d’ordre
n pour P, il existe un nombre premier p tel que z est une racine de P, /, — X.
Donc Rac(P,, — X) est inclus dans la réunion des Rac(P,/, — X) ou p parcourt
Pensemble 7(n) des nombres premiers divisant n. Il en résulte que p(P, — X)
est majoré par Y p(Pn/p — X).

peEm(n)
3b) p(Pn/p - X) < deg(Pn/p - X) = deg(Pn/p) - dn/p
Donc p(P, — X) < o(d,n).

4) On a deg(U) = d™ — deg(A); deg(V) = d" ™ — deg(A) < deg(U). Le 1)
s’applique et donne : p(U) 4+ p(U —V) = 1 4+d"» — d" ™.

5) On a Rac(U) C Rac(P, — X) donc p(U) < p(P, — X) et on applique le
3)b.

6)a) Ona: P,(z) = Py_m(2) = w, et Py(2) = Pp(Pr—m(2)) = Py (w) donc
P, (w) = w.

6)b) Puisque P n’a pas d’élément d’ordre m on a : p(P,, — X) < o(d, m).
Il y a donc au plus o(d,m) complexes w tels que Pp,(w) = w. Pour tout w il
y a au plus d"~™ complexes z tels que P,_,,(z) = w. Donc : p(P, — Py—m) <
d"""g(d,m).

6)c) On a Rac(U — V) C RacP, — P,_,) donc p(U = V) < p(P, — Pom)
et on applique le b) : p(U — V) < d" ™0o(d, m).

7a) o(d,2) = d*? =d*>~' <d* L.



7)b) o(d,3) = d*/® = d < d*2.
o(d,4) = d*? = &> < d*2.
o(d,5) =d®/® = d' <d* 2.

7)c) Tous les ¢/p ou p € m(n) sont des entiers distincts compris entre 1 et
q/2.

7)d) C’est une conséquence immédiate de ce qui précéde.

7)e) Soit ¢; la partie entiére de ¢/2. On majore o(d, q) par dqt;ll_l <dntl g
d9/?+1 Mais ¢/2 +1 < ¢ — 2 si ¢ > 6. La preuve est compléte.

8) Comme n > m > 2, n > 3 donc o(d,n) < d" 2, donc, d’aprés 5),
p(U) <d"2.
Comme m > 2 on a o(d,m) < d™~! donc d’aprés 6), p(U — V) < d" 1.

9) D’aprés 8) et 4),

ona:l+d—d ™ < p(U)+p(U—-V)<d 1t +d"2,
donc : 14+d* <drt +d" 2 + 40 ™,

puis : 1+d" < d"! 42472 < 24" < d,
Contradiction.
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