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Arithmétique des polyndmes, composition de polyndmes.

Dans le probléme, les polynomes sont des éléments de C[X]. On dira que ce
sont des polyndmes complexes.

Soit P un polynéme complexe non nul. On note deg(P) son degré, Rac(P)
Pensemble des racines de P et p(P) le cardinal de Rac(P).

Pour tout complexe z on note up(z) la multiplicité de z comme racine de
P. En particulier up(z) =0 si z n’est pas racine de P.

Le PGCD des polynémes non nuls Py, P, ..., P. est 'unique polynome uni-
taire divisant chaque P; et dont le degré est maximal pour cette propriété. On
note en particulier P A @ le PGCD de P et Q.

On dit que les polynémes Py, Ps,..., P, sont premiers entre eux dans leur
ensemble si leur PGCD vaut 1. On dit qu’ils sont deux d deux premiers entre
eux si P; A P; = 1 pour tous 4, j tels que 1 <¢ < j < r.

Soit f une fonction de C dans N telle que le support de f, soit I’ensemble

I des z tels que f(z) # 0, est fini. Dans ce cas la notation Y f(z) est admise
zeJ
pour toute partie J de C finie ou non ; par définition c’est Y. f(z). Exemple :

zelnJ
> fz) =2 f(2).
zeC zel
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Questions préliminaires.

1) Soit P un polynéme complexe non constant.
a) Justifier 1 < p(P) < deg(P). Que dire de P si p(P) = 17 si p(P) =
deg(P)?
b) Justifier la relation deg(P) = Y up(2).
zeC
2) Soit (P, @) un couple de polyndomes complexes non constants. Comparer
les propriétés (i) et (ii) :
(i) P et @ sont premiers entre eux;

(i) Rac(P)NRac(Q) = 0.

3) Donner un exemple de triplet (P,Q,R) de polynémes complexes non
constants dont le PGCD vaut 1 alors que P et ) ne sont pas premiers entre
eux, ) et R non plus et R et P non plus.
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Partie I. Inégalité de Mason

Pour tout entier d > 1, on note 73 ’ensemble des triplets (4, B,C) de
polyndmes complexes non nuls vérifiant :
e A+ B+(C=0;
e A, B et C sont premiers entre eux dans leur ensemble.
e max(deg(A),deg(B),deg(C)) = d.
Le but de cette partie est de montrer ’inégalité de Mason :

(R)  p(A)+p(B) +p(C) = 1+d

pour tout (A, B,C) de Tg.
Jusqu’a la fin de cette partie on se donne un entier d > 1 et un élément
(A, B,C) de T4. On note :
D =AB — BA'.

1)a) Montrer que A, B et C sont deux & deux premiers entre eux.
b) Montrer que Rac(A), Rac(B) et Rac(C) constituent une partition de
Rac(ABC).

2)a) Montrer : D = BC' — CB' = CA' — AC".
b) Montrer que D n’est pas nul.

Quitte & changer lordre de (A, B,C), ce qui ne modifie pas l’appartenance
a Tq, on imposera désormais la condition :

deg(A) > deg(B) > deg(C)

et on notera d’' le degré de C.
3)a) Montrer : deg(B) = deg(A) = d.
b) Montrer : deg(D) < d+d' —2sid =det deg(D) =d+d —1sid <d.

4)a) Soit z une racine de P ou P est I'un des polynomes A, B, C.
Montrer : pp(z) = pup(z) — 1.
b) Montrer : deg(D) > 2d + d' — (p(A) + p(B) + p(C)).

5) Montrer 'inégalité (R).
6) Montrer que 1'égalité p(A) + p(B) + p(C) = 1+ d équivaut a ((i) et (ii)) :
(i) toute racine de D est racine de A, de B ou de C;
(i) d' < d.
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Partie II. Cas d’égalité dans I’inégalité de Mason. Exemples
On garde les notations de la partie précédente.

Le but de cette partie est d’exprimer dans certains cas, pour d > 1, les
triplets (A, B, C) de Ty vérifiant la condition :



(E) d+1=p(A)+p(B)+p(C)

On imposera toujours la condition deg(A) = deg(B) = d > deg(C).

D’aprés le 6) de la partie I, on a d’ = deg(C) < d.

Quitte & échanger A et B on imposera de plus la condition p(A) < p(B).

Quitte a remplacer (A, B,C) par (AA, AB, A\C) pour un certain A non nul,
ce qui ne change pas ’appartenance a 7 et conserve ’éventuelle propriété (E),
on supposera que le polynome A est unitaire ; le terme directeur de A est donc
X4

Dans toutes les questions de cette partie la notation (4, B, C') désigne un élé-
ment de Ty vérifiant les condtions du préambule. On notera si besoin «aq, as ...
les racines de A, « 8’il n’y en a qu’une; idem pour B et C' avec les lettres S et

.
1) Montrer que —X? est le terme directeur de B.
2) Exprimer les (A4, B, C) vérifiant (E) pour d = 1.

3) Soit un entier d > 2 quelconque.
Prouver que si p(4) =1 et d' =0 alors (A, B, C) vérifie (E).

4) Soit un entier d > 2 quelconque.
Prouver que si p(A) =1 et p(B) =1 alors (A, B, C) vérifie (E).

5) Exprimer les (A, B, C) vérifiant (E) pour d = 2.

6) On suppose dans cette question d > 3, d' =1 et p(A) = 1.
a) Montrer qu’il existe des complexes distincts « et v et un complexe non
nul \ tels que A = (X —a)? et C = \X —7).
b) Montrer que (A, B, C) vérifie (E) si et seulement si B admet une racine
double 8 & exprimer en fonction de « et ~.

7) On suppose dans cette question d = 3, d' = 0 et p(A) = 2.
a) Montrer que (4, B,C) vérifie (E) si et seulement s’il existe des com-
plexes distincts ay, ag, B1, (B2 tels que A = (X — a1)*(X — o),
B =—(X — $1)*(X — B2) et un complexe non nul X tel que C' = \.
b) On pose u = ‘“T% et 0 = algﬁl, ag = p+a et fo = p+ 3 . Calculer
o', 8" et A en fonction de §.
c) Exprimer les (A, B, C) vérifiant (E) dans ce cas.

8) Montrer qu’on a obtenu tous les (A4, B, C) vérifiant (E) pour d = 3.
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Partie ITI. Une application

On considére ’équation



(F) A™+B™+C™ =0

ou (A, B,C) est un triplet de polynémes non nuls et m est un entier au
moins égal & 3. Une solution de (F) est dite triviale 8'il existe un triplet (A, p, v)
de complexes non nuls et un polyndéme non nul P tels que A = AP, B = uP,
C=vPet N+ pum+v"™=0.

1) Montrer, en utilisant I'inégalité de Mason que (F) n’a aucune solution
non triviale ot A, B, C sont premiers entre eux dans leur ensemble.

2) Montrer que (F) n’a aucune solution non triviale.

Kok kkk

Partie IV. Points d’ordre fini pour un polynéme complexe.

Soit un polynéme P = ag X%+ ay_1 X% 1 +---+ag ol les a; sont complexes.
Soit @ un polyndéme complexe. On définit le composé P o @ :

PoQ=0a4Q"+aq1Q" "+ +ao.
1) Montrer que P o @ est 'unique polynéme R tel que
Vze C, R(z) = P(Q(z)).

2) Montrer que le polynéome X est élément neutre pour la loi o c’est-a-dire :
XoP=PoX=P.

3) Montrer : (PoQ)o R= Po(Qo R) pour tous polynoémes P, Q, R.
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Pour tout polynéme complexe non nul P, on définit par récurrence le poly-
néme P, pour tout entier n > 0 :

Ph=X;P,=P;Yn>0,P,1=PoP,
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4) Montrer P, o P,, = P, 4., pour tous entiers m et n.

5)a) Exprimer le degré de P o () en fonction de ceux de P et de Q.
b) Exprimer le degré de P,, en fonction de celui de P.
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Définitions.

Soit P un polyndéme complexe de degré d > 2.

Un complexe z tel que P(z) = z est appelé point fize de P.

Un complexe z est dit d’ordre fini pour P s’il existe au moins un entier n > 1
tel que z est un point fixe de P,. Le plus petit de ces entiers n s’appelle I’ordre
de z pour P et on le note O(z, P).
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6) Soit z un point d’ordre fini pour P. On note m = O(z, P).
a) Montrer que z est un point fixe de P, si et seulement si m divise n.
b) Montrer que la suite de terme général (Pg(2))ren est périodique de
plus petite période m.

7) Montrer que P posséde au moins un point d’ordre 1.

8) On traite 'exemple P = X? — @ oll a est un paramétre complexe.
a) Montrer que P posséde exactement deux points fixes sauf pour une
valeur de a & préciser.
b) Prouver que sauf pour une valeur ag de a & préciser, le systéme :

P(u)=v; Pv)=u;v#u

admet un couple (u,v) solution unique & l'ordre prés tandis pour a = ay il
n’a pas de solution.
Que peut-on en conclure sur 'existence de points d’ordre 2 pour P?
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Partie V. Existence de points d’ordre n pour un polynéme com-
plexe.

Pour tout entier n > 2 on note m(n) 'ensemble des nombres premiers p
divisant n.
Pour tous entiers d > 2 et n > 2, on note

o(d,n) = Z dn/e.
pem(n)
Dans cette partie on prouve le théoréme de Baker :
Théoréme. Pour tout polynome P de degré d > 2, l’ensemble des entiers

n > 2 tels qu’il n’existe aucun z tel que O(z, P) = n est ou bien vide ou bien
réduit a un seul élément.

On établit d’abord une conséquence de la partie 1.

1) Soit (U, V') un couple de polynémes complexes non nuls et premiers entre
eux. On suppose deg(U) > deg(V'). Montrer, en utilisant I'inégalité de Mason :

p(U) +p(U = V) =1+ deg(U) — deg(V).

On se donne maintenant un polynéme complexe P non nul de degré d > 2.

2) Soit un entier n > 2 et soit z un point fixe de P,. Montrer 1’équivalence

de (i), (i), (ii).



(i) z est d’ordre n pour P;
(ii) n ne posséde aucun diviseur strict g tel que P,(z) = z;
(iii) il n’existe aucun nombre premier p tel que P, /,(2) = z.

3) Soit un entier n > 2. On suppose que P ne posséde aucun point d’ordre

a) Montrer : p(P,, — X) < > p(P,/p — X).
pET(n)
b) Montrer : p(P, — X) < o(d,n).

Dans la suite on raisonne par l’absurde en supposant fauz pour P l’énoncé
du théoréme de Baker. On suppose donc ezistence de deux entiers m et n tels
que 2 < m < n et pour lesquels P ne posséde ni point d’ordre m ni point d’ordre
n. On pose :

P,—X Pom—X
U= "R etV:%OQR:(Pn—X)/\(Pn_m—X).

4) Montrer a 'aide du 1) : p(U) +p(U - V) > 1+ d" —d" ™.
5) Montrer : p(U) < o(d,n).

6)a) Soit z un élément de Rac(P, — Pr—m ). On pose w = P, _p,(2).
Montrer : P, (w) = w.

b) Montrer : p(P, — Pr—m) < d" ™o (d, m).

c) Montrer : p(U — V) < d" ™o (d, m).

7) Soit un entier ¢ > 2. On montre dans cette question :

di=' si ¢g=2
< .
U(daQ) =X {dq—z si q 2 3
a) Résoudre le cas ¢ = 2.
b) Résoudre les cas 3 < g < 5.
On suppose désormais q = 6.
¢) Montrer que Papplication p — ¢/p est une injection de m(q) dans
[1,4/2]. _
d) En déduire : o(d,q) < > d-.
0<i<q/2
e) Terminer la preuve.

8) Montrer : p(U) < d" 2 et p(U—-V) <d" L.

9) Terminer la preuve du théoréme de Baker.
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