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Arithmétique des polynômes, composition de polynômes.

Dans le problème, les polynômes sont des éléments de C[X]. On dira que ce
sont des polynômes complexes.

Soit P un polynôme complexe non nul. On note deg(P ) son degré, Rac(P )
l'ensemble des racines de P et ρ(P ) le cardinal de Rac(P ).

Pour tout complexe z on note µP (z) la multiplicité de z comme racine de
P . En particulier µP (z) = 0 si z n'est pas racine de P .

Le PGCD des polynômes non nuls P1, P2, . . . , Pr est l'unique polynôme uni-
taire divisant chaque Pi et dont le degré est maximal pour cette propriété. On
note en particulier P ∧Q le PGCD de P et Q.

On dit que les polynômes P1, P2, . . . , Pr sont premiers entre eux dans leur

ensemble si leur PGCD vaut 1. On dit qu'ils sont deux à deux premiers entre
eux si Pi ∧ Pj = 1 pour tous i, j tels que 1 ⩽ i < j ⩽ r.

Soit f une fonction de C dans N telle que le support de f , soit l'ensemble
I des z tels que f(z) ̸= 0, est �ni. Dans ce cas la notation

∑
z∈J

f(z) est admise

pour toute partie J de C �nie ou non ; par dé�nition c'est
∑

z∈I∩J

f(z). Exemple :∑
z∈C

f(z) =
∑
z∈I

f(z).

*****

Questions préliminaires.

1) Soit P un polynôme complexe non constant.
a) Justi�er 1 ⩽ ρ(P ) ⩽ deg(P ). Que dire de P si ρ(P ) = 1 ? si ρ(P ) =

deg(P ) ?
b) Justi�er la relation deg(P ) =

∑
z∈C

µP (z).

2) Soit (P,Q) un couple de polynômes complexes non constants. Comparer
les propriétés (i) et (ii) :

(i) P et Q sont premiers entre eux ;
(ii) Rac(P ) ∩ Rac(Q) = ∅.

3) Donner un exemple de triplet (P,Q,R) de polynômes complexes non
constants dont le PGCD vaut 1 alors que P et Q ne sont pas premiers entre
eux, Q et R non plus et R et P non plus.

*****
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Partie I. Inégalité de Mason

Pour tout entier d ⩾ 1, on note Td l'ensemble des triplets (A,B,C) de
polynômes complexes non nuls véri�ant :

• A+B + C = 0 ;
• A, B et C sont premiers entre eux dans leur ensemble.
• max(deg(A),deg(B),deg(C)) = d.
Le but de cette partie est de montrer l'inégalité de Mason :

(R) ρ(A) + ρ(B) + ρ(C) ⩾ 1 + d

pour tout (A,B,C) de Td.
Jusqu'à la �n de cette partie on se donne un entier d ⩾ 1 et un élément

(A,B,C) de Td. On note :
D = AB′ −BA′.

1)a) Montrer que A, B et C sont deux à deux premiers entre eux.
b) Montrer que Rac(A), Rac(B) et Rac(C) constituent une partition de

Rac(ABC).

2)a) Montrer : D = BC ′ − CB′ = CA′ −AC ′.
b) Montrer que D n'est pas nul.

Quitte à changer l'ordre de (A,B,C), ce qui ne modi�e pas l'appartenance

à Td, on imposera désormais la condition :

deg(A) ⩾ deg(B) ⩾ deg(C)

et on notera d′ le degré de C.

3)a) Montrer : deg(B) = deg(A) = d.
b) Montrer : deg(D) ⩽ d+d′−2 si d′ = d et deg(D) = d+d′−1 si d′ < d.

4)a) Soit z une racine de P où P est l'un des polynômes A, B, C.
Montrer : µD(z) = µP (z)− 1.
b) Montrer : deg(D) ⩾ 2d+ d′ − (ρ(A) + ρ(B) + ρ(C)).

5) Montrer l'inégalité (R).

6) Montrer que l'égalité ρ(A)+ ρ(B)+ ρ(C) = 1+ d équivaut à ((i) et (ii)) :
(i) toute racine de D est racine de A, de B ou de C ;
(ii) d′ < d.

*****

Partie II. Cas d'égalité dans l'inégalité de Mason. Exemples

On garde les notations de la partie précédente.
Le but de cette partie est d'exprimer dans certains cas, pour d ⩾ 1, les

triplets (A,B,C) de Td véri�ant la condition :

2



(E) d+ 1 = ρ(A) + ρ(B) + ρ(C)

On imposera toujours la condition deg(A) = deg(B) = d ⩾ deg(C).
D'après le 6) de la partie I, on a d′ = deg(C) < d.
Quitte à échanger A et B on imposera de plus la condition ρ(A) ⩽ ρ(B).
Quitte à remplacer (A,B,C) par (λA, λB, λC) pour un certain λ non nul,

ce qui ne change pas l'appartenance à Td et conserve l'éventuelle propriété (E),
on supposera que le polynôme A est unitaire ; le terme directeur de A est donc
Xd.

Dans toutes les questions de cette partie la notation (A,B,C) désigne un élé-
ment de Td véri�ant les condtions du préambule. On notera si besoin α1, α2 . . .
les racines de A, α s'il n'y en a qu'une ; idem pour B et C avec les lettres β et
γ.

1) Montrer que −Xd est le terme directeur de B.

2) Exprimer les (A,B,C) véri�ant (E) pour d = 1.

3) Soit un entier d ⩾ 2 quelconque.
Prouver que si ρ(A) = 1 et d′ = 0 alors (A,B,C) véri�e (E).

4) Soit un entier d ⩾ 2 quelconque.
Prouver que si ρ(A) = 1 et ρ(B) = 1 alors (A,B,C) véri�e (E).

5) Exprimer les (A,B,C) véri�ant (E) pour d = 2.

6) On suppose dans cette question d ⩾ 3, d′ = 1 et ρ(A) = 1.
a) Montrer qu'il existe des complexes distincts α et γ et un complexe non

nul λ tels que A = (X − α)d et C = λ(X − γ).
b)Montrer que (A,B,C) véri�e (E) si et seulement si B admet une racine

double β à exprimer en fonction de α et γ.

7) On suppose dans cette question d = 3, d′ = 0 et ρ(A) = 2.
a) Montrer que (A,B,C) véri�e (E) si et seulement s'il existe des com-

plexes distincts α1, α2, β1, β2 tels que A = (X − α1)
2(X − α2),

B = −(X − β1)
2(X − β2) et un complexe non nul λ tel que C = λ.

b) On pose µ = α1+β1

2 et δ = α1−β1

2 , α2 = µ+α′ et β2 = µ+β′ . Calculer
α′, β′ et λ en fonction de δ.

c) Exprimer les (A,B,C) véri�ant (E) dans ce cas.

8) Montrer qu'on a obtenu tous les (A,B,C) véri�ant (E) pour d = 3.

*****

Partie III. Une application

On considère l'équation
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(F) Am +Bm + Cm = 0

où (A,B,C) est un triplet de polynômes non nuls et m est un entier au

moins égal à 3. Une solution de (F) est dite triviale s'il existe un triplet (λ, µ, ν)
de complexes non nuls et un polynôme non nul P tels que A = λP , B = µP ,
C = νP et λm + µm + νm = 0.

1) Montrer, en utilisant l'inégalité de Mason que (F) n'a aucune solution
non triviale où A,B,C sont premiers entre eux dans leur ensemble.

2) Montrer que (F) n'a aucune solution non triviale.

*****

Partie IV. Points d'ordre �ni pour un polynôme complexe.

Soit un polynôme P = adX
d+ad−1X

d−1+ · · ·+a0 où les ai sont complexes.
Soit Q un polynôme complexe. On dé�nit le composé P ◦Q :

P ◦Q = adQ
d + ad−1Q

d−1 + · · ·+ a0.

1) Montrer que P ◦Q est l'unique polynôme R tel que

∀z ∈ C , R(z) = P (Q(z)).

2) Montrer que le polynôme X est élément neutre pour la loi ◦ c'est-à-dire :
X ◦ P = P ◦X = P .

3) Montrer : (P ◦Q) ◦R = P ◦ (Q ◦R) pour tous polynômes P , Q, R.

***

Pour tout polynôme complexe non nul P , on dé�nit par récurrence le poly-
nôme Pn pour tout entier n ⩾ 0 :

P0 = X ; P1 = P ; ∀n ⩾ 0, Pn+1 = P ◦ Pn

***

4) Montrer Pn ◦ Pm = Pn+m pour tous entiers m et n.

5)a) Exprimer le degré de P ◦Q en fonction de ceux de P et de Q.
b) Exprimer le degré de Pn en fonction de celui de P .

***

Dé�nitions.
Soit P un polynôme complexe de degré d ⩾ 2.
Un complexe z tel que P (z) = z est appelé point �xe de P .
Un complexe z est dit d'ordre �ni pour P s'il existe au moins un entier n ⩾ 1

tel que z est un point �xe de Pn. Le plus petit de ces entiers n s'appelle l'ordre
de z pour P et on le note O(z, P ).

4



***

6) Soit z un point d'ordre �ni pour P . On note m = O(z, P ).
a) Montrer que z est un point �xe de Pn si et seulement si m divise n.
b) Montrer que la suite de terme général (Pk(z))k∈N est périodique de

plus petite période m.

7) Montrer que P possède au moins un point d'ordre 1.

8) On traite l'exemple P = X2 − a où a est un paramètre complexe.
a) Montrer que P possède exactement deux points �xes sauf pour une

valeur de a à préciser.
b) Prouver que sauf pour une valeur a0 de a à préciser, le système :

P (u) = v ; P (v) = u ; v ̸= u

admet un couple (u, v) solution unique à l'ordre près tandis pour a = a0 il
n'a pas de solution.

Que peut-on en conclure sur l'existence de points d'ordre 2 pour P ?

*****

Partie V. Existence de points d'ordre n pour un polynôme com-
plexe.

Pour tout entier n ⩾ 2 on note π(n) l'ensemble des nombres premiers p
divisant n.

Pour tous entiers d ⩾ 2 et n ⩾ 2, on note

σ(d, n) =
∑

p∈π(n)

dn/p.

Dans cette partie on prouve le théorème de Baker :

Théorème. Pour tout polynôme P de degré d ⩾ 2, l'ensemble des entiers

n ⩾ 2 tels qu'il n'existe aucun z tel que O(z, P ) = n est ou bien vide ou bien

réduit à un seul élément.

On établit d'abord une conséquence de la partie I.

1) Soit (U, V ) un couple de polynômes complexes non nuls et premiers entre
eux. On suppose deg(U) > deg(V ). Montrer, en utilisant l'inégalité de Mason :

ρ(U) + ρ(U − V ) ⩾ 1 + deg(U)− deg(V ).

On se donne maintenant un polynôme complexe P non nul de degré d ⩾ 2.

2) Soit un entier n ⩾ 2 et soit z un point �xe de Pn. Montrer l'équivalence
de (i),(ii),(iii).
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(i) z est d'ordre n pour P ;
(ii) n ne possède aucun diviseur strict q tel que Pq(z) = z ;
(iii) il n'existe aucun nombre premier p tel que Pn/p(z) = z.

3) Soit un entier n ⩾ 2. On suppose que P ne possède aucun point d'ordre
n.

a) Montrer : ρ(Pn −X) ⩽
∑

p∈π(n)

ρ(Pn/p −X).

b) Montrer : ρ(Pn −X) ⩽ σ(d, n).

Dans la suite on raisonne par l'absurde en supposant faux pour P l'énoncé

du théorème de Baker. On suppose donc l'existence de deux entiers m et n tels

que 2 ⩽ m < n et pour lesquels P ne possède ni point d'ordre m ni point d'ordre

n. On pose :

U =
Pn −X

R
et V =

Pn−m −X

R
où R = (Pn −X) ∧ (Pn−m −X).

4) Montrer à l'aide du 1) : ρ(U) + ρ(U − V ) ⩾ 1 + dn − dn−m.

5) Montrer : ρ(U) ⩽ σ(d, n).

6)a) Soit z un élément de Rac(Pn − Pn−m). On pose w = Pn−m(z).
Montrer : Pm(w) = w.
b) Montrer : ρ(Pn − Pn−m) ⩽ dn−mσ(d,m).
c) Montrer : ρ(U − V ) ⩽ dn−mσ(d,m).

7) Soit un entier q ⩾ 2. On montre dans cette question :

σ(d, q) ⩽

{
dq−1 si q = 2
dq−2 si q ⩾ 3

·

a) Résoudre le cas q = 2.
b) Résoudre les cas 3 ⩽ q ⩽ 5.

On suppose désormais q ⩾ 6.
c) Montrer que l'application p 7→ q/p est une injection de π(q) dans

[1, q/2].
d) En déduire : σ(d, q) ⩽

∑
0⩽i⩽q/2

di.

e) Terminer la preuve.

8) Montrer : ρ(U) ⩽ dn−2 et ρ(U − V ) ⩽ dn−1.

9) Terminer la preuve du théorème de Baker.

*****

FIN
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