
Correction Agrèg interne ep2 2018

Partie I : Quelques propriétés de la distance à un fermé
I- A : Généralités

Rappel sur la borne inf :
Soit X une partie minorée de R, c�est-à-dire qu�il existe m 2 R;8x 2 X;m � x: On dit que m est un minorant de X:
L�ensemble des minorants de X admet toujours un plus grand élément qu�on appelle la borne inférieure de X et qu�on
note infX.
infX est donc le plus grand minorant de X.

En pratique I = infX ssi

8<: 8x 2 X; I � x
et
8J 2 R; J > I ) 9x 2 X;x < J

Caractérisation Soit I = infX alors

� Soit I 2 X et I = minX donc I est le plus petit élément de X:

� Soit I =2 X et il existe une suite (xn)n2N d�éléments de X qui converge vers I:

Preuve : 8n 2 N; I + 1
n+1 > I donc il existe xn 2 X tel que I � xn < I + 1

n+1 : Par théorème d�encadrement, la suite
(xn) converge vers I.

Propriétés : Si Y est une partie minorée de R. Si X � Y alors inf Y � infX:
En e¤et, tout minorant de Y est un minorant de X donc inf Y est un minorant de X donc plus petit ou égal au plus
grand des minorants de X:
Fin du rappel

1. Soit x 2 E; dB (x) = inf fd (x; b) ; b 2 Bg et dA (x) = inf fd (x; a) ; a 2 Ag :
Si A � B alors fd (x; a) ; a 2 Ag � fd (x; b) ; b 2 Bg donc dB (x) � dA (x) :

2. Rappel Adhérence : Soit A une partie d�un espace métrique E alors on appelle adhérence de A et on note �A
le plus petit fermé de E qui contient A. Donc A � �A et A est un fermé ssi A = �A. Les éléments de �A sont les
limites des suites convergentes d�éléments de A.

Plus sioux : x 2 �A ssi 8r > 0; B (x; r) \A 6= ; ssi 8r > 0;9a 2 A; d (x; a) < r.
Fin du rappel.

Soit x 2 E; dA (x) = 0, d (x;A) = 0, inf fd (x; a) ; a 2 Ag = 0.
Donc il existe une suite d�éléments an 2 A; (d (an; x))n2N converge vers 0.
Donc il existe une suite d�éléments an 2 A; (an)n2N converge vers x. Donc x 2 �A:

Réciproquement si x 2 �A alors il existe une suite (an)n2N d�éléments de A qui converge vers x.

Donc (d (an; x))n2N converge vers 0. Or, 0 est un minorant de l�ensemble fd (x; a) ; a 2 Ag :Donc inf fd (x; a) ; a 2 Ag =
0: Donc dA (x) = 0:

Autre démonstration sans les suites :

Soit

8x 2 E; dA (x) = 0, d (x;A) = 0, inf fd (x; a) ; a 2 Ag = 0

,

8<: 8a 2 A; 0 � d (x; a)
et
8r > 0;9a 2 A; d (x; a) < r

, 8r > 0;9a 2 A; d (x; a) < r , x 2 �A

3.
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(a) 8x; y 2 E;8a 2 A; d (x; a) � d (x; y) + d (y; a)
Donc dA (x) = infb2A d (x; b) � d (x; y) + d (y; a)
Donc dA (x) � d (x; y) � d (y; a) donc dA (x) � d (x; y) est un minorant de fd (y; a) ; a 2 Ag donc dA (x) �
d (x; y) � infa2A d (y; a) = dA (y)
Finalement on a

dA (x) � d (x; y) + dA (y)

(b) D�après la question précédente 8x; y 2 E; dA (x)� dA (y) � d (x; y) :
On intervertissant x et y on obtient 8x; y 2 E; dA (y)� dA (x) � d (y; x) = d (x; y) :
Donc jdA (x)� dA (y)j � d (x; y) donc dA est 1�lipschitzienne.

4. Comme A � �A on a d �A � dA d�après la question 1.
8x 2 E;8y 2 �A; dA (x) � d (x; y) + dA (y) = d (x; y) d�après les questions précédentes. Donc dA (x) est un
minorant de

�
d (x; y) ; y 2 �A

	
; donc dA (x) � infy2 �A d (x; y) = d

�
x; �A

�
= d �A (x) :

Finalement, dA = d �A:

5.

(a) Si A = B alors dA = dB .
Réciproquement, si A 6= B alors il existe b 2 BnA ou il existe a 2 AnB.
Supposons que 9b 2 BnA alors d (b; B) = 0 et d (b; A) 6= 0 car b =2 �A = A: donc dB 6= dA. On conclut par
contraposition.
Deuxième preuve : Si on suppose dA = dB .
Alors x 2 A, x 2 �A, dA (x) = 0, dB (x) = 0, x 2 �B , x 2 B.

(b) On a dA = dB , d �A = d �B d�après la question 4.
Et d�après la question 5.a. d �A = d �B , �A = �B. Finalement on a

dA = dB , �A = �B:

6. Rappel sur les compacts :

Dé�nition : Soit K un espace métrique. K est un compact ssi toute suite d�éléments de K admet une sous-suite
convergente.

Toute fonction continue d�un compact dans R est bornée et ses bornes sont atteintes.
Exemples : [a; b] et plus généralement les parties fermées et bornées des evn de dimension �nies.

�n du rappel

infa2A fd (x; a)g
Comme pour x �xé, a! d (x; a) est continue (cf *) alors si A est compact cette fonction atteind ses bornes donc
il existe a0 2 A tel que

d (x; a0) = inf
a2A

fd (x; a)g :

* On a 8a; b; x 2 E; jd (x; a)� d (x; b)j � d (a; b) donc a! d (x; a) est lipschtzienne donc continue.

et l�inégalité provient de l�inégalité triangulaire car 8a; b; x 2 E; d (x; a) � d (x; b)+ d (a; b) et d (x; b) � d (x; a)+
d (a; b) :

7. Soit b 2 A et soit r = d (m; b) On pose K = Bf (m; r) \A.
K est non vide car b 2 K: K est fermé car intersection de deux fermés.

De plus K est borné par dé�nition donc K est un compact de E car E est de dimension �nie.

8c 2 K;8d =2 AnK on a d (m; c) � r < d (m; d) donc infa2A d (m;a) = infa2K d (m;a)
D�après la question précédente il existe a0 2 A; d (m;a0) = infa2K d (m;a) = dA (m) :

8.

(a) Si x 2 �A alors dA (x) = 0. Donc notre hypothèse donne un a 2 A tel que jx� aj = 0 donc x = a donc
x 2 A: On vient de montrer que �A � A donc A est fermé.
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(b) Une partie X de R est un intervalle ssi 8x; y 2 X;8z 2 R; x � z � y ) z 2 X:
Si A est un singleton alors c�est un intervalle, sinon soient a < b 2 A: Alors soit x 2 R tel que a � x � b:
On pose a0 le point de A tel que d (x;A \ ]�1; x]) = d (x; a0) (il existe d�après la question 8.a. ) et b0 tel
que d (x;A \ [x;+1[) = d (x; b0) :
On a a0 � x et si y véri�e a0 < y < x alors d (x; y) < d (x; a0) donc y =2 A \ ]�1; x]. Donc A \ ]�1; x] =
A \ ]�1; a0] de même A \ [x;+1[ = A \ [b0;+1[ : Donc A \ ]a0; b0[ = ;:
On pose m = a0+b0

2 on a d (m;A) = d (m;a0) = d (m; b0) = b0�a0
2 ce qui contredit l�uncité de l�hypothèse.

Donc x = a0 = b0 2 A et A est un intervalle.

9. Soit h = (h1; :::; hn) le projeté orthogonal de x sur H alors d (x;H) = kx� hk
On a a1h1 + :::+ anhn + b = 0 donc b = �a1h1 � :::� anhn
Donc ja1x1 + :::+ anxn + bj = ja1 (x1 � h1) + :::+ an (xn � hn)j
Si on appelle ~a = (a1; :::; an) alors ja1x1 + :::+ anxn + bj = jh~a; x� hij
Soit M = (m1; :::mn) et P = (p1; :::; pn) deux points de H.

Alors
D
~a;
��!
MP

E
= 0 en e¤et b = �a1m1 � :::� anmn = �a1p1 � :::� anpn

Donc a1 (p1 �m1) + :::: + an (pn �mn) = 0: Donc ~a est orthogonal à H donc ~a et x � h sont colinéaires (car
orthogonaux à H) et �nalement

jh~a; x� hij = k~ak kx� hk

Donc

d (x;H) =
jh~a; x� hij

k~ak =
ja1x1 + :::+ anxn + bjp

a21 + :::+ a
2
n

I- B : Quelques exemples dansMn(R):
Rappels sur les matrices orthogonales, bases orthonormées, tout ça tout ça...

Soit E un espace euclidien, i.e. R ev de dimension �nie et muni d�un produit scalaire h:; :i :
Une base (e1; :::; en) de E est dite orthonormée ssi

8i; j 2 f1; :::; ng ; hei; eji = �i;j :

Une application linéaire u de E dans E est dite orthogonale ssi on a une des propriétés suivantes :

� u est une isométrie (8x 2 E; ku (x)k = kxk )

� u conserve le produit scalaire (8x; y 2 E; hx; yi = hu (x) ; u (y)i) car hx; yi = 1
4

�
kx+ yk2 � kx� yk2

�
� L�image d�une b.o.n. de E est une b.o.n. de E (hei; eji = �i;j ) hu (ei) ; u (ej)i = �i;j)
� Soit A la matrice de u dans une b.o.n. alors les vecteurs colonnes de A forment une b.o.n. de Rn:
� Soit A la matrice de u dans une b.o.n. alors A�1 = AT (A 2 On (R))
Astuce : pour calculer un produit de matrice AB le coe¢ cient en i,j du résultat est le produit scalaire de
la ligne i de A avec la colonne J de B:
En particulier les coe¢ cients de AT � A sont les produits scalaires des colonnes de A donc si les colonnes
de A forment une famille orthonormée on a AT �A = In:
Si x =

Pn
i=1 �iei avec (e1; :::en) orthonormée alors

kxk =
p
hx; xi =

vuut* nX
i=1

�iei;
nX
j=1

�jej

+
=

vuut nX
i=1

�i

nX
j=1

�j hei; eji

=

vuut nX
i=1

�i

nX
j=1

�j hei; eji =

vuut nX
i=1

�2i hei; eii =

vuut nX
i=1

�2i

Et u (x) =
Pn

i=1 �iu (ei) donc si (u (e1) ; :::; u (en)) est un b.o.n. alors ku (x)k =
Pn

i=1 �
2
i = kxk :

Fin du rappel
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10.

(a) Rappel : théorème spectral : Si A est une matrice réelle symétrique alors elle est diagonalisable dans
une b.o.n. de Rn autrement dit il existe une matrice P telle que P�1AP = D avec P�1 = PT : Donc
kPk = 1 car P est la matrice d�une isométrie.
kDk =



P�1AP

 � 

P�1

 kAk kPk = kAk
et kAk =



PDP�1

 � kPk kDk

P�1

 = kDk
Donc kAk = kDk :

(b) Soit A la matrice de u dans la base canonique et soit D =

0B@ d1 0
. . .

0 dn

1CA où d1; :::; dn 2 R+ une matrice

diagonale telle que A = PDP�1 avec P 2 On (R) : On a kuk = kAk = kDk :
Soit x = (x1; :::; xn) 6= 0Rn on a

kDk = sup kDxkkxk = sup

p
d21x

2
1 + :::+ d

2
nx

2
1

kxk � max
1�i�n

(di)

p
x21 + :::+ x

2
1

kxk = max
1�i�n

(di)

Notons k un indice tel que dk = max1�i�n (di) alors si x0 = (0; :::; 0; 1; 0; :::; 0) avec le 1 en ke position alors

kDx0k =
p
d2k = dk et kx0k = 1 donc kDk = sup

kDxk
kxk � kDx0k

kx0k
= dk = max1�i�n (di)

Finalement,
kDk = max

1�i�n
(di) :

Remarque : supx6=0Rn
ku (x)k
kxk = supx6=0Rn




u(x)kxk




 = supx6=0Rn 


u� x
kxk

�


 = supkyk=1 ku (y)k
(c) de qui se moque-t-on ?

11.

(a) 8M 2 Gln (R) on a MTM est symétrique car
�
MTM

�T
=MT

�
MT

�T
=MTM:

0 est valeur propre de A ssi il existe x 6= 0Rn ; Ax = 0Rn ssi kerA 6= f0Rng ssi A n�est pas inversible.
Donc 0 n�est pas valeur propre de MTM:

Soit � une valeur propre de MTM (alors � est réelle d�après le théorème spectral) et il existe un vecteur
X non nul tel que MTMX = �X. Mais alors XTMTMX = �XTX:

Mais XTX = kXk2 > 0 et XTMTMX = (MX)
T
MX = kMXk2 > 0 donc � = kMXk2

kXk2 > 0:

Soit P la matrice orthogonale telle que P�1MTMP = � =

0B@ �1 0
. . .

0 �n

1CA
On pose C = P

0B@
p
�1 0

. . .
0

p
�n

1CAP�1 donc

C2 = P

0B@
p
�1 0

. . .
0

p
�n

1CAP�1 � P
0B@
p
�1 0

. . .
0

p
�n

1CAP�1
= P�P�1 =MTM:

De plus CT =
�
P�1

�T 0B@
p
�1 0

. . .
0

p
�n

1CA
T

PT = P

0B@
p
�1 0

. . .
0

p
�n

1CAP�1 = C:
Donc on a bien construit une matrice C symétrique à valeurs propres strictement positives telle que C2 =
MTM:
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(b) On pose U =MC�1 donc UC =M . Et

UT =
�
MC�1

�T
=
�
C�1

�T
MT = C�1MT

= C�1MTMM�1 = C�1C2M�1 = CM�1 = U�1

(AB = In alors BTAT = In autrement dit
�
AT
��1

=
�
A�1

�T
)

Donc U 2 On (R) et la vie est belle !

12.

(a) L�application det :Mn (R)! R est continue (polynomiale)
F = det�1 (f1g) est un fermé deMn (R) :

(b) Posons 8x 2 ]1;+1[ ;Mx =

0BBBBB@
x 0 0
0 1

x
1

. . .
0 1

1CCCCCA 2 F et est symétrique et la plus grande de ses valeurs

propres est x alors kMxk = x donc F n�est pas bornée donc pas compacte !
Rappel : A � E est borné ssi il existe r > 0;8a 2 A; kak < r.

13. d (0n;F) = inf fkMk ;M 2 Fg :
Si M 2 F alors M 2 GLn (R) donc on peut écrire M = UC avec U 2 On (R) et C symétriques à valeurs propres
strictement positives.

Donc detM = detU detC = detC car detU 2 f�1;+1g et detM = 1 et det C > 0.

kMk � kUk kCk = kCk car U est la matrice d�une isométrie.
Astuce C = U�1M donc kCk �



U�1

 kMk = kMk et donc kMk = kCk est le maximum des valeurs propres
de C: Or le produit des valeurs propres de C est égal à son déterminant qui est égal à 1 donc le maximum des
valeurs propres de C est supérieur ou égal à 1 donc kMk � 1
Or si M = In alors kMk = 1 donc inf fkMk ;M 2 Fg = 1 = d (0n;F) :

14. On cherche les matrices M telles que detM = 1 et kMk = 1.
Si on écrit M = UC la décomposition polaire de M alors detC = 1 et le max des valeurs propres de C est égal
à 1. Notons �1; :::; �n les valeurs propres (positives) de C. 8i; �i � 1 et

Qn
i=1 �i = 1. Supposons qu�il existe j

tel que �j < 1 alors comme
Q
i 6=j �i � 1 on a

Qn
i=1 �i < 1 : contradiction.

Donc toutes les valeurs propres de C sont égales à 1. Or, C est diagonalisable car symétrique donc C est
semblable à In donc C = In et donc M = U 2 On (R).
Réciproquement si M 2 SOn (R) alors detM = 1 et kMk = 1.
Donc d (0n;F) est atteinte en M ssi M 2 SOn (R) :

15.

(a) 8p 2 N�; kApk � kAkp et
P

p2N kAk
p converge car kAk < 1 donc

P
p2N kApk converge ce qui signi�e queP

p2NA
p converge absolument.

(In �A)
P

p2NA
p =

P
p2NA

p �
P

p2NA
p+1 = A0 = In:

(b) Premier cas si T = Id alors si kIn �Mk < 1 on pose A = In �M de d�après la question précédente In �A
est inversible et In �A =M:
Cas général : si kT �Mk < 1

kT�1k

Alors


In � T�1M

 = 

T�1 (T �M)

 � 

T�1

 kT �Mk < 1

Donc d�après le premier cas T�1M est inversible et par suite M = T
�
T�1M

�
est inversible.

16. d (T;S) = inf fkT �Mk ;M 2 Sg
D�après la question précédente par contraposition si M 2 S alors kT �Mk � 1

kT�1k donc d (T;S) �
1

kT�1k :

TT�1 = In donc


TT�1

 = 1 � kTk

T�1

 donc kTk � 1

kT�1k et ça aide pas trop.

On note T = UC sa décomposition polaire donc


T�1

 = 

C�1
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d (T;S) = inf fkUC �Mk ;M 2 Sg
= inf

�

C � U�1M

 ;M 2 S
	

= inf fkC �Mk ;M 2 Sg = d (C;S)

C est diagonalisable donc il existe une matrice P orthogonale telle que PCP�1 =

0B@ �1 0
. . .

0 �n

1CA = D avec

0 < �1 � �2::: � �n.

(a) donc

d (T;S) = inf fkC �Mk ;M 2 Sg = inf
�

PCP�1 � PMP�1

 ;M 2 S

	
= inf fkD �Mk ;M 2 Sg

On choisit alors M =

0BBB@
0 0
�2

. . .
0 �n

1CCCA 2 S

On a D �M =

0BBB@
�1 0

0
. . .

0 0

1CCCA et donc kD �Mk = �1 qui est la valeur propre minimale de D:

Or


C�1

 est la plus grande valeur propre de C�1 donc c�est maxn 1

�i
; �i : valeur propre de C

o
= 1

min�i
= 1

�1

donc kD �Mk = 1
kC�1k

Finalement, d (T;S) � 1
kC�1k =

1
kT�1k .

Donc on peut conclure

d (T;S) = 1

kT�1k :

Partie II : Points d�une courbe à égale distance d�une droite.
17. 8x 2 R; f (x) = 2x

ex+1

(a) 8x 2 R; f 0 (x) = 2(ex+1)�2xex
(ex+1)2

= 2�xe
x+ex+1

(ex+1)2

Soit g dé�nie par 8x 2 R; g (x) = �xex + ex + 1 donc g est du signe de f 0:
Alors g0 (x) = �xex � ex + ex = �xex du signe de �x.
Donc g est croissante sur R� et strictement décroissante sur R+ et g (0) = 2 et limx!+1 g (x) = �1 donc
g s�annule une fois sur R+:
De plus g (1) = 1 et g (2) = �e2 + 1 < 0 donc g s�annule entre 1 et 2:

Notons � la racine de g. On a
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(b)

­6 ­4 ­2 2 4 6

­10

­8

­6

­4

­2

2

x

y

18. def alpha(epsilon) :
e = 1
x = 1
y = 2
while e � epsilon :
z = x+y

2
t = �z � exp o(z) + exp o (z) + 1
if t > 0 :
x = z
else :
y = z
e = y � x
Return x

19. f est continue sur R donc sur R+ et limx!+1 x
2f (x) = limx!+1

2x3

ex+1 = 0 donc d�après le critère de RiemannR +1
0

f (x) dx converge et comme f est positive sur R+; f est intégrable sur R+: (attention f intégrable sur R+

ssi
R +1
0

jf (t)j dt converge ).

20. fn (x) = (�1)n 2xe�(n+1)xPN
n=0 fn (x) = 2xe

�xPN
n=0 (�e�x)

n

Pour x > 0; j�e�xj < 1 et donc limN!+1
PN

n=0 (�e�x)
n
= 1

1+e�x

Donc
P+1

n=0 fn (x) =
2xe�x

1+e�x =
2x
ex+1 = f (x) :

Et pour x = 0; fn (0) = 0 donc
P+1

n=0 fn (0) = 0 = f (0) :

21.
R +1
0

f (t) dt =
R +1
0

P+1
n=0 fn (t) dt

On peut utiliser le critère de convergence des séries alternées de fonctions car 8x 2 R+; fn (x) est positif si n est
pair et négatif sinon.

De plus 8x 2 R+; jfn+1 (x)j = 2xe�(n+2)x =
�
2xe�(n+1)x

�
e�x � 2xe�(n+1)x = jfn (x)j

Et limn!+1 kfnk1 = limn!+1 2
1

n+1e
�1 = 0

Donc, on a convergence uniforme sur R+ de la série
P
fn

Donc Z +1

0

f (t) dt =

+1X
n=0

Z +1

0

fn (t) dt =

+1X
n=0

Z +1

0

(�1)n 2xe�(n+1)xdx

Et Z +1

0

(�1)n 2xe�(n+1)xdx = (�1)n 2
 �
x
e�(n+1)x

� (n+ 1)

�+1
0

+

Z +1

0

e�(n+1)x

n+ 1
dx

!

=
2 (�1)n

n+ 1

�
e�(n+1)x

� (n+ 1)

�+1
0

=
2 (�1)n

(n+ 1)
2
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De plus
+1X
n=0

2 (�1)n

(n+ 1)
2 =

+1X
n=1

2 (�1)n+1

n2
= 2

+1X
n=0

1

(2n+ 1)
2 � 2

+1X
n=1

1

(2n)
2

Or,
P+1

n=1
1

(2n)2
= 1

4

P+1
n=1

1
n2 =

�2

24 et
P+1

n=0
1

(2n+1)2
= �2

6 �
�2

24 =
�2

8

Donc
+1X
n=0

2 (�1)n

(n+ 1)
2 =

2�2

8
� 2�

2

24
=
�2
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