Correction Agreg interne ep2 2018

Partie I : Quelques propriétés de la distance a un fermé
I- A : Généralités

Rappel sur la borne inf :
Soit X une partie minorée de R, c’est-a-dire qu'il existe m € R,Vx € X, m < z. On dit que m est un minorant de X.
L’ensemble des minorants de X admet toujours un plus grand élément qu’on appelle la borne inférieure de X et qu’on
note inf X.
inf X est donc le plus grand minorant de X.

Vee X, I <z
En pratique I = inf X ssi ¢ et

VJeR,J>TI=dreX,z<J

Caractérisation Soit I = inf X alors
e Soit [ € X et I = min X donc I est le plus petit élément de X.

e Soit I ¢ X et il existe une suite (z,) d’éléments de X qui converge vers I.

neN

Preuve : Vn € N, I + "_1H > [ donc il existe z,, € X tel que [ <z, <+ n%_l Par théoréeme d’encadrement, la suite

(zn,) converge vers I.

Propriétés : Si Y est une partie minorée de R. Si X C Y alors inf Y < inf X.

En effet, tout minorant de Y est un minorant de X donc inf Y est un minorant de X donc plus petit ou égal au plus
grand des minorants de X.

Fin du rappel

1. Soit z € E,dp (z) = inf {d (z,b) ,b € B} et da () = inf{d(z,a),a € A}.
Si A C Balors {d(z,a),a € A} C {d(x,b),b € B} donc dg (z) < da(z).
2. Rappel Adhérence : Soit A une partie d’un espace métrique E alors on appelle adhérence de A et on note A

le plus petit fermé de E qui contient A. Donc A C A et A est un fermé ssi A = A. Les éléments de A sont les
limites des suites convergentes d’éléments de A.

Plus sioux : x € A ssi Vr > 0,B(z,7) NA# 0 ssiVr>0,3a € A,d(z,a) <.
Fin du rappel.

Soit x € E,dy (z) =0< d(z,A) =0 < inf {d(z,a),a € A} =0.

Donc il existe une suite d’éléments a,, € A, (d (an,)), o converge vers 0.

Donc il existe une suite d’¢léments a,, € A, (a,),, oy converge vers z. Donc z € A.

Réciproquement si € A alors il existe une suite (a,,) d’éléments de A qui converge vers x.

neN

Donc (d (an, x)),,cy converge vers 0. Or, 0 est un minorant de I'ensemble {d (v, a),a € A} . Doncinf {d(z,a),a € A} =

0. Donc d4 (x) = 0.
Autre démonstration sans les suites :

Soit

Ve € E,da(x)=0&d(z,A) =0« inf{d(z,a),ac A} =0
Va € A,0<d(z,a)
& et SVr>0,JacAd(z,a)<rercA
Vr>0,3a € A,d(xz,a) <r



(a) Vo,y € E\Va € A,d(z,a) < d(z,y) +d(y,a)
Donc d4 (x) = infpea d (z,b) < d(x,y) + d(y,a)
Donc d4 (z) — d(z,y) < d(y,a) donc da (z) — d(x,y) est un minorant de {d(y,a),a € A} donc d4 (z) —
d(z,y) <infeead(y,a) = da(y)
Finalement on a
da (z) < d(z,y) +da(y)
(b) D’apres la question précédente Va,y € E,da () —da (y) < d(x,y).
On intervertissant x et y on obtient Va,y € E,da (y) — da (z) < d(y,z) =d(z,y).
Donc |da (z) — da (y)| < d(z,y) donc d4 est 1—lipschitzienne.

4. Comme A C Aonadg <ds d’aprés la question 1.

Vr € E,Vy € A,da () < d(z,y) + da(y) = d(z,y) d’aprés les questions précédentes. Donc da (z) est un
minorant de {d (z,y),y € A}, donc d4 (z) <inf,c 1d(z,y) = d (z,A) = dj ().

Finalement, d4 = dj.

(a) Si A= B alorsdg = dp.
Réciproquement, si A # B alors il existe b € B\ A ou il existe a € A\B.

Supposons que 3b € B\ A alors d (b, B) = 0 et d (b, A) # 0 car b ¢ A = A. donc dp # d4. On conclut par
contraposition.

Deuxiéme preuve : Si on suppose ds = dp.

Alorsr € A rcAsdy(z)=0dg(z) =02 Be e B.
(b) On ady =dp < dz = dg d’apres la question 4.

Et d’aprés la question 5.a. dj = dg < A = B. Finalement on a

da=dp <= A=B.

6. Rappel sur les compacts :

Définition : Soit K un espace métrique. K est un compact ssi toute suite d’éléments de K admet une sous-suite
convergente.

Toute fonction continue d’un compact dans R est bornée et ses bornes sont atteintes.

Exemples : [a,b] et plus généralement les parties fermées et bornées des evn de dimension finies.

fin du rappel

infoca {d(z,a)}

Comme pour z fixé, a — d (z, a) est continue (cf *) alors si A est compact cette fonction atteind ses bornes donc

il existe ag € A tel que
d(z,a9) = ireljf4 {d(z,a)}.

*On aVa,b,xz € E,|d(z,a) —d(x,b)] <d(a,b) donc a — d(x,a) est lipschtzienne donc continue.
et I'inégalité provient de I'inégalité triangulaire car Va, b,z € E,d(x,a) < d(z,b)+d (a,b) et d(z,b) < d(z,a)+
d(a,b).
7. Soit b € A et soit r = d(m,b) On pose K = By (m,r) N A.
K est non vide car b € K. K est fermé car intersection de deux fermés.
De plus K est borné par définition donc K est un compact de E car F est de dimension finie.
Vee K,¥d ¢ A\K on a d(m,c) <r <d(m,d) donc inf,ec4 d (m,a) = inf,cx d(m,a)

D’apres la question précédente il existe ag € A,d(m,ap) = infoecx d(m,a) =da (m).

(a) Siz € A alors da (z) = 0. Donc notre hypotheése donne un a € A tel que |z —a| = 0 donc « = a donc
z € A. On vient de montrer que A C A donc A est fermé.



(b) Une partie X de R est un intervalle ssi Va,y € X,Vz e Rz <z <y =z € X.
Si A est un singleton alors c’est un intervalle, sinon soient a < b € A. Alors soit z € R tel que a < z < b.
On pose a’ le point de A tel que d(x, AN]—oo,z]) = d(z,a’) (il existe d’aprés la question 8.a. ) et b’ tel
que d (z, AN [z, +oo]) = d(z,b).
On ad <z etsiyverified’ <y < x alors d(z,y) < d(z,a’) donc y ¢ AN]—o0,z]. Donc AN]—o0,z] =
AN]—oo,a’] de méme AN [z,4+oo[=ANI[Y,+oo[. Donc AN]a’,b'[ = 0.
On pose m = # onad(m,A)=d(m,d)=d(m,b)= % ce qui contredit I'uncité de 'hypothese.
Donc z = a’ = b € A et A est un intervalle.

9. Soit h = (hq, ..., hy) le projeté orthogonal de = sur H alors d (z, H) = ||z — hl|

On aaihy +...+aph, +b=0donc b = —ajh; — ... — ayhy,
Donc |aizy + ... + apzy, + b = |ay (x1 — h1) + ... + an (), — hy)]
Si on appelle @ = (a1, ..., a,) alors |a1z1 + ... + apxy, + b = |{(a@, x — h)|

Soit M = (myq,...my,) et P = (p1,...,pn) deux points de H.
Alors <(i’,]\ﬁ>> =0eneffet b=—a1m — ... — apm, = —a1P1 — ... — GnPn

Donc a; (p1 — m1) + ... + an (pn, — my) = 0. Donc @ est orthogonal & H donc @ et  — h sont colinéaires (car
orthogonaux a H) et finalement
(a@,z — k)| = ||| ||z — A

Donc

a,r—h)| |aiwy + ...+ apx, + b

llall Vi + . a2

I- B : Quelques exemples dans M,,(R).

d(x,H):|<

Rappels sur les matrices orthogonales, bases orthonormeées, tout ¢a tout ¢a...
Soit E un espace euclidien, i.e. R ev de dimension finie et muni d’un produit scalaire (.,.) .

Une base (e, ..., e,) de E est dite orthonormée ssi
Vi,j c {1, ,TL} s <€Z‘, €j> = 5i,j~
Une application linéaire © de F dans E est dite orthogonale ssi on a une des propriétés suivantes :

e u est une isométrie (Vz € E, ||u (z)|| = ||| )

e u conserve le produit scalaire (Vz,y € E, (z,y) = (u(z),u(y))) car (z,y) = 1 (||x +yl® =z — 3/”2)

L’image d'une b.o.n. de E est une b.o.n. de E ({(e;,¢e;) =0, ; = (u(e;),u(e;)) = 0;5)

Soit A la matrice de © dans une b.o.n. alors les vecteurs colonnes de A forment une b.o.n. de R™.

Soit A la matrice de u dans une b.o.n. alors A=! = AT (A € O, (R))

Astuce : pour calculer un produit de matrice AB le coefficient en i,j du résultat est le produit scalaire de
la ligne ¢ de A avec la colonne J de B.

En particulier les coefficients de AT x A sont les produits scalaires des colonnes de A donc si les colonnes
de A forment une famille orthonormée on a AT x A = I,.

Siz=>"", ae avec (e1,...e,) orthonormée alors

n n n n
[zl = (z,2) = <Z%’€i,zaj€j> = Zaizaj (i, €5)
i=1 j=1 =1 =1
n n n n
= Zai Zaj (ei e;) = Za? (ei,ei) = Za?
=1 =1 i=1 i=1
Et u(z) =Y, asu(e;) donc si (u(er),...,u(e,)) est un b.on. alors ||u(z)|| = Y1, o? = ||z

Fin du rappel



10.

11.

(a) Rappel : théoréme spectral : Si A est une matrice réelle symétrique alors elle est diagonalisable dans
une b.o.n. de R” autrement dit il existe une matrice P telle que P~'AP = D avec P~! = P”. Donc
|P|| =1 car P est la matrice d’une isométrie.

IDI| = [|P~*AP[| < [[P7H[ AL Pl = (1Al
et |All = ||[PDPH| < |PI[|ID| [P~ =Dl
Donc [|A = || D]
dy 0
(b) Soit A la matrice de u dans la base canonique et soit D = oudy,...,d, € RT une matrice

0 dy
diagonale telle que A = PDP~! avec P € O,, (R). On a |jul| = ||A]| = || D] .
Soit = (x1,...,%,) # Og» on a

&2 22 ¢ xa?
1D = sup L2 — gupy Vdiet + ..+ diat < max (dy) YT
IIxII ] 1<i<n ] 1<i<n

Notons k un indice tel que d, = max;<;<, (d;) alors si zg = (0, ...,0, 1,0, ...,0) avec le 1 en k¢ position alors

| Daol| = /& = dy et ||| = 1 done ||D]| = ”m” > ”ﬁi‘ﬁ” — dy = maxycicn ()
Finalement,

1Dl = max (di).
Remarque : sup,., [ (T|) SUPz£0gn % ’ = SUPg£0gn ||U (HQCTH) H = Sup||y||=1 [l ()l

(¢) de qui se moque-t-on ?

(a) YM € Gl,, (R) on a MT M est symétrique car (MTM)" = MT (MT)" = MT M.
0 est valeur propre de A ssi il existe x # Ogn, Az = Ogn ssi ker A # {Ogn } ssi A n’est pas inversible.
Donc 0 n’est pas valeur propre de MT M.

Soit « une valeur propre de M7 M (alors « est réelle d’aprés le théoréme spectral) et il existe un vecteur
X non nul tel que MTMX = oX. Mais alors XTMTMX = aXTX.

Mais XTX = | X|]> > 0 et XTMTMX = (MX)" MX = |[MX]? > 0 donc a = 12X 5 .

X1

o 0

Soit P la matrice orthogonale telle que P"'MTMP = A =
0 o,

var 0
On pose C = P P~ donc
0 Vi
NG 0 Vvai 0
c? = p Ptxp p!
0 Qln 0 O
= PAP'=M"M
Var 0 \" Var 0
De plus O = (P~1)" PT =P pl=c

0 oy, 0 Vo,
Donc on a bien construit une matrice C' symétrique & valeurs propres strictement positives telle que C? =
MTM.



12.

13.

14.

15.

16.

n pose U = ~* donc =M. Et
b) O U=MC'd UC=M.E
vt = (M) =N M =c'MT
= C'MTMM'=Cc'C?Mt'=CcMt=U""

(AB = I,, alors BT AT = I,, autrement dit (AT)f1 = (Afl)T)
Donc U € O, (R) et la vie est belle !

(a) L’application det : M,, (R) — R est continue (polynomiale)
F =det™" ({1}) est un fermé de M,, (R).

z 0 0
1
0 2
(b) Posons Vz € |1, +o0[, M, = 1 € F et est symétrique et la plus grande de ses valeurs
0 1
propres est x alors ||M,;|| = « donc F n’est pas bornée donc pas compacte !

Rappel : A C E est borné ssi il existe r > 0,Va € A, ||a]| < 7.

d(0,,F) =inf {||M||,M € F}.

Si M € F alors M € GL,, (R) donc on peut écrire M = UC avec U € O,, (R) et C symétriques a valeurs propres
strictement positives.

Donc det M = det U det C' = det C car detU € {—1,+1} et det M =1 et det C > 0.
1M < IUIIC] = IIC|| car U est la matrice d’une isométrie.

Astuce C = U~'M donc ||C|| < [|[U7H]| [|M]| = |[M]| et donc ||M| = ||C|| est le maximum des valeurs propres
de C. Or le produit des valeurs propres de C est égal a son déterminant qui est égal & 1 donc le maximum des
valeurs propres de C est supérieur ou égal a 1 donc || M| > 1

Or si M = I, alors ||M|| = 1 donc inf {||M||,M € F} =1=4d(0,,F).

On cherche les matrices M telles que det M =1 et || M| = 1.

Si on écrit M = UC' la décomposition polaire de M alors det C' = 1 et le max des valeurs propres de C' est égal
a 1. Notons Ay, ..., A, les valeurs propres (positives) de C. Vi, \; < 1 et H?:l A; = 1. Supposons qu’il existe j
tel que A; < 1 alors comme H#j Ai<lona H?Zl A; < 1 : contradiction.

Donc toutes les valeurs propres de C sont égales & 1. Or, C est diagonalisable car symétrique donc C' est
semblable & I, donc C = I, et donc M =U € O,, (R).

Réciproquement si M € SO, (R) alors det M =1 et ||M]| = 1.
Donc d (0, F) est atteinte en M ssi M € SO, (R).

(a) Vp € N*, [|AP]] < JA]" et 3 | Al converge car [|Al| < 1 donc - [|AP|| converge ce qui signifie que
ZpGN AP converge absolument.

(In = A) Y, en AP = 3, en AP = 2 oy AP = A0 =1,
(b) Premier cas si T' = I alors si ||I,, — M| < 1 on pose A = I,, — M de d’apreés la question précédente I,, — A
est inversible et I,, — A = M.
Cas général : si [|[T — M| < ﬁ
Alors || I, = T7*M|| = |77 (T — M)|| < [|[T7||IT — M| < 1
Donc d’apreés le premier cas T~ "M est inversible et par suite M =T (TﬁlM ) est inversible.
d(T,S)=inf{||T — M||,M € S}
D’aprés la question précédente par contraposition si M € S alors | T — M| > HTil*ll\ donc d (T, S) > HTl*ll\’
TT-! =1, donc HTT’1H =1<||7 HT’1|| donc ||T|| > ﬁ et ¢a aide pas trop.

On note T'= UC' sa décomposition polaire donc HT‘1 H = HC’_l ||



d(T,S) = f{|UC—M|,M c S}
= inf{||C-U"'M|,M € S}
= inf{|C-M|,MeS}=d(C,S)
A1 0
C est diagonalisable donc il existe une matrice P orthogonale telle que PCP~! = = D avec
0 An
0< A\ < ... <\,
(a) donc
d(T,8) = if{||C-M||,MeS}= inf{HPC’P*1 — PMP*IH M e S}
= inf{||D-M|,M e S}
0 0
A2
On choisit alors M = ) €S
0 An
A1 0
0
OnaD—-M= i et donc ||D — M|| = A1 qui est la valeur propre minimale de D.
0 0
Or HC‘lH est la plus grande valeur propre de C~! donc c’est max {)\i, A; @ valeur propre de C} = ﬁ = %
_ 1
donc |D — M| = =T
Finalement, d (T,S) < HCl‘ll\ = =
Donc on peut conclure
1
d(T,S) = 7.
17|
Partie II : Points d’une courbe a égale distance d’une droite.
17. VmeR,f(m)zefﬁ
_ 2(e"+1)—2ze” _ o —ge®+e®+1
(a) vx 6 R? f, (Z') - (ez+1)2 - 2 Jézmii)Z
Soit g définie par Vo € R, g () = —ze® + e® + 1 donc g est du signe de f’.
Alors ¢’ (x) = —ze” — €” + ¥ = —ze” du signe de —z.
Donc g est croissante sur R~ et strictement décroissante sur Rt et g (0) = 2 et lim, 1 g () = —o00 donc

g s’annule une fois sur R
De plus g (1) =1 et g(2) = —e? + 1 < 0 donc g s’annule entre 1 et 2.

X a

o) + 0 -

o / \

Notons « la racine de g. On a
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def alpha(epsilon) :

e=1
r=1
y=2
while e > epstlon :
5 = Ty

2
t=—zxexpo(z) +expo(z)+1
ift>0:
=z
else :
y=z
e=y—=x
Return x

2z°
e®+41

f0+oo f (z) dz converge et comme f est positive sur RY, f est intégrable sur RT. (attention f intégrable sur R™

ssi O+OO |f ()] dt converge ).

f est continue sur R donc sur RT et lim, ;o 22f (z) = lim,_ 1 oo = 0 donc d’apres le critére de Riemann

fn (z) = (=1)" 2z~ (D)=

227:0 fn (fﬂ) = 2xe " Zf:fzo (*67“’)"

Pour z > 0,|—e | < 1 et donc limy_, ;oo 227:0 (e )" =
Doncz 20 fn (@) = ff_i:z = % = f(z).
EtpOUI‘JZ:O,fn()—OdOHCE -0 "(O):():f(())

[ f@ydt = O fu () dt

On peut utiliser le critére de convergence des séries alternées de fonctions car Vo € R, f,, (z) est positif si n est
pair et négatif sinon.

De plus Vo € RY, | foi1 (2)| = 2ze~ ("2 = (2ze~(+De) e=2 < 2ge=(ntDT = | £, (2)]

Et limy, oo | fnlloo = limp— oo 2:35¢7 1 =0

1
14+e—=

Donc, on a convergence uniforme sur R* de la série Y f,

Donc
+oo +o0 +oo 00 +oo
/ t)dt = Z/ t)dt = Z/ " ope” (WD gy
0 n=0
Et
+o0 —(n+1)z +oo oo —(n+1)x
/ (=1)" 2ze~ "tV = (—1)"2 [me] —|—/ R
2(~1)" [e<”+1>xr°" 2"
n+l |[—(n+1)], (n+ 1)



De plus

+oo n +oo n+1 +oo +o0
2(—1 2(—1 1 1
P L ) S
n=0 (n + 1) n=1 n n=0 (2n + 1) n=1 (2n)
+oo 1 1 400 1 _ 72 +oo 1 _ 72 72 _ n?
O )i Gy il = oG = 6 28 =
Donc

+2"’2(—1)” 2r2  2x% g2
(n+1)? 8 24 6

n=0



