Correction Agreg interne epl 2022

Rappel : théoréme spectral :
Si A est une matrice n X n symétrique réelle alors il existe une matrice D diagonale et une matrice P orthogonale (
ie. P71 = PT ) telles que A= PDP~! = PDPT.
Vrai ou faux
1.

(a) Faux car VM,N € M,, (C),tr (MN) =tr (NM)
En effet si on note M = (m; ;) et N = (n; ;)

tr(MN) = Z Zmi,knk,i = Z Zmi,knk,i = Z an7imi7k =tr (NM)
i=1 k=1 k=11i=1 k=11i=1
Ll <Llacl>
Lo
Si M = : et N = ( o Cy - Cy > Alors MN = (Li, Cj)
Ly
(Li, Cj) = myana,j +miang j + ... = 3 My kN
k=1
(b) Si A= ( (cl Z > € M3 (C) alors
X —-a —b
xa(X) = det( . X_d>:X2—(a+d)X+ad—bc
xa(X) = X?—tr(A)X +detA
Donc VRAL
(c) Si A = 1 _11 ) alors trA = 0 et det A = 0 donc x4 (X) = X? donc la seule valeur propre est

0, donc si A est diagonalisable alors A la matrice diagonale associée est la matrice nulle donc il existe
PeGLy(C),A=P0,P~! =0, donc c’est FAUX car A # 0,,.

(d) Sip:Z— R,n— n. donc FAUX.
Exercice préliminaire
2. Montrons par récurrence sur d > 2 que x¢, (X) = P (X)
Sid=1,Cp = (—ap) donc x¢, (X) =X 4+ a9 = P(X).

Sid=2,Cp = <(1) _ZO > donc
—a1

X ap

xer (X)=| 5 x o, =X’ + X +ag=P(X)

Supposons le résultat vrai pour un entier d fixé.



Soit P = X9+ 4+ 3¢ 4, X? alors

X ) e O ao
-1 X a1
Xop (X)) = 0 —1 : :
. . . X aq—1
0 -+ 0 -1 X-+ay
X 0 0 a -1 X 0 0
-1 .0 : 0 -1 0
= X +(-1)"2ag|
0 . X ag S X
0 0 -1 X+ay 0o -~ 0 -1

= X (X9 a X" L aeX +a) + (—1) P ag (-1)
= XM 4 X4 4 axX?+ a1 X +ag=P(X)

Donc le résultat est vrai par récurrence.

(a)
i. Soit u € L (CP), I'application linéaire dont la mtrice par rapport a la base canonique est M.
La famille {x, Mzx,...,.M /"_1m} est libre par définition de p. On compléte cette famille pour obtenir
une base B de CP.
La famille {z, Mz, ..., M*x} est liée donc il existe des coefficients (a;)
.+ a1 Mzx + apgz = 0cp
Dans la base B la matrice de u s’écrit

ic((0.u—1]) tels que MFa+o, MP— o+

Mz M2 .- ... M:r x
0 0 —Q T
1 _
0 ?1 Mz
) 0 1
M =
0
MHr—1g
: : 1l —ayr % N
o o0 --- 0 @) N

ii. Notons P = X* + a#,lX“’l + ..+ X +ap

La matrice précédente est
C *
!/ P
M= < Op—n N )

X1, -C *
done xap () =det (KT ) <, (30 % (0 = POO 0 ()
p—u p—p
Donc xpy (M) = P (M) x xn (M) = xn (M) x P (M)
Par définition de P on a P (M)x = M 'z + a1 MP 1o+ ..+ a1 Mz + apz = Ocr
Donc x,; (M) xz = 0cr mais comme M’ est semblable & M, x,; = xa done x,; (M) x = Oc».

(b) Vo € CP, x5 (M)x = Ocr donc x; (M) = Op(cry donc x,, est annulateur de M (théoréme de Cayley-
Hamilton).

Probléme
I. Exemple dans s; (R)

4. 11 faut prendre comme produit scalaire sur R? celui défini par VX,Y € R, (X,Y) = ‘XY

On a VXY € R?,(a(X),Y) = '(AX)Y = !'X'AY = !'XAY car A est symétrique et donc VX,Y €
RP (a(X),Y) = (X,a(Y)) donc a est symétrique.



5. SiVY € CP, 'Y SY > 0 alors V) : valeur propre de S si on choisit X un vecteur propre associé on a
EXSX = 'X(AX) =\ (tXX) >0

Or, {XXX = || X|*> > 0 car X est non-nul donc A > 0. Donc toutes les valeurs propres sont positives et donc
SeSF(R).

Réciproquement si on suppose que S € Sp+ (R) alors S est diagonalisable dans une base orthonormée (théoreme
spectral), c’est-a-dire qu’il existe P inversible telle que S = P"1DP avec P~ = 'P.

Donc VY € RP, 'Y SY = 'Y'PDPY = '(PY) D (PY) Notons 41, ..., §,, les valeurs propres (positives) de S et

notons PY = (p1, ..., pn) alors
Y SY = 6192 + Gop3 4 ... + 0,02 >0

5 0 0 p1 d1p1
arf o .0 S :
0 0 5n Pn 6npn

6. VY e RP, 'Y SY >0et 'YTY >0donc 'YSY + 'YTY >0 donc 'Y (S+T)Y >0
Comme S + T est symétrique, d’apres la question précédente S + T € S;‘ (R).

g 0 0
7. On peut écrire S =P 'DPavec D= | o .. avec Vi € [[1,n]],d; > 0.
0 0 6,
ap 0 0
Soit a;; = {/3; alors si on note A = 0 . 0 ona A" = D.
0 0 ag

Donc (P*IAP)n =P 'A"P = P~'DP = S donc on peut choisir R = P~1AP.

(a) Rappel : si f et g € L(E) commutent alors ker f est stable par g
(du coup f — aid et g commutent également et donc les sous-espaces propres de f sont stables par g ).
Preuve : Soit « € ker f, alors f (g (z)) =g (f (2)) =g (0g) = 0g donc g (x) € ker f.
IcionaUxS=UxU"=U""1=U"xU =S xU. Donc s et u commutent donc tout sous-espace propre
de s : Ej, (s) = ker (s — \;id) est stable par w.
D’autre par Vz,y € RP, (u(z),y) = (x,u(y)) donc en particulier Va,y € Ej, (s),{u(z),y) = (x,u(y))
donc la restriction de u & E}y, (s) induit u; : Ey, (s) — Ej, (s),2 — u(z).

(b) Soit « une valeur propre de u; donc il existe z € E}, (s) non nul tel que u; (z) = az mais alors u} (z) =
u" (z) = oz = s (x)
Or, s(x) = Nz car « € E), (s) = ker (s — \sid). Finalement, oz = Az donc o = \;. Or U, S € S (R)
donc a > 0 et \; > 0 donc o = ¥/)\;.

(c) La matrice de u; est réelle est symétrique donc u; est diagonalisable et sa seule valeur propre c’est {/\;
donc u; = ¥/ \jid
Comme s est diagonalisable on a R? = Ej, (s) ® Ey, (5) © ... ® Ej, (s)
Donc Vz € RP, il existe des x; € Ey, (s) uniques tels que x = Y7 z;
Bt u (@) =320 uw:) = 30 wi () = 200, VA

Donc u est déterminé de facon unique.
9. Relire les deux questions précédentes...
10. V0,V € §f (R), (V0) "+ (¥V) =0 +V = (VTF7)"
Donc 1 est bien définie.
Si (U, V) =4 (U, V") alors YT = YT donc (ﬁf)n —U= (W)" = U’ donc U = U’ et de méme V = V'

donc v est injective.



11.

12.

13.

14.

15.

16.

Soit (X,Y,Z) € (Sf (R))3 tels que X™ + Y™ = Z" alors Soit U = X" et V = Y on a bien ¢ (U,V) =
(X, Y, VX" + Y") car la racine n® de X™ est X et on a Y/ X" +Y" = V/Z" = Z par unicité de la racine n°.
Donc 1 est surjective.

Finalement, 1 est une bijection.
PARTIE II

VM € My (Z),M? = (trM) x M — (det M) I, d’aprés Cayley-Hamilton.
Donc VM € SLy (Z),M? = (trM) x M — I
Et donc

tr (M?) = (trM)* - 2.

VM € SLy(Z),M? € SLy (Z) donc en appliquant la formule précédente 4 M? on obtient

tr(M*) = (i (M?))" -2
= (trM )2—2
= (trM)*+4—4@trM)* —
tr (MY = (trM)* —4(trM)* +2

02=0[8];12=1[8];22=4[8];32=1[8];42=0[8];5> = 1[8];6* = 4[8]; 7> = 1[8]
Si (trM)* = 0[8] alors (trM)* =

0f
Si (trM)? = 1[8] alors (trM)* = 18] et tr (M) =1-4+2[8]=-1[g]
Si (trM)* = 4[8] alors (trM)* = 0[8] et tr (M*) = —-4x4+2[8]=2[g]
Dans tous les cas, on a bien tr (M*) = 2[8] ou tr (M*) = —18]
Si X*+Y* =24 alors tr (X4) + (Y ) tr (Z4)

tr
|
]}
pas de solutions & X4+ Y4 = Z4 dans SLs (Z).

4[8
Mais ¢r (X*) +tr (Y?) = 1[8] et tr(2*) = { 2[8] donc tr (Z%) # tr (X*) +tr (Y*) et donc il n’y a
2[8

Si 4 divise n alors n = 4p avec p € Z donc 'équation est X*P + Y4 = Z4 qui peut s’écrire (X?)*+ (v?)* = (zr)*
: impossible d’aprés la question précédente car XP YP ZP € SLy (Z).

PARTIE III

RAPPELS : K = Q(6) = {a + bd|a,b € Q} avec 6> € Q et ¢ (a + bd) = a+ bd = a — bd.

K C C: Q- espace vectoriel.
Méthode 1 (classique) :
Siz=a+blecKety=d +V§ec K alors

VaeQuz+ay=(a+ad)+ (b+ab)deK

Méthode 2 (sioux) :

K =wvect (1,6) donc c’est un sous Q—espace vectoriel de C.

Comme 6 ¢ Q, la famille (1,6) est libre sur Q donc K est de dimension 2.

(K, +) est un groupe commutatif d’apres la question précédente.

Comme K C C la multiplication est associative et distributive par rapport a 'addition. 1 =1+0 x § € K est
un élément neutre pour la multiplication. De plus Ve =a+bf e Ket y=d' + b0 € K on a

ry = ad + (ab' +a'b) s + bb' 6>
= (aa’ +bb'6%) + (ab/ +a'b) 5 € K



17.

18.

19.

car 6% € Q.
Donc K est un sous-anneau de C.

Soit z =a+bd € K, si x #0, comme a —bd #0car 6 ¢ Q, on a
1 1 a— bd a— bd

r a+b6:(a+b6)(a—b6) a2 — 24>
a b 5
a? —b25% a2 — b25°

Donc l'inverse de = est dans K et donc K est un corps.

eK

Un morphisme de corps c’est juste un morphisme d’anneaux ol les anneaux de départ et d’arrivée sont des corps.
Dong, il faut montrer que

Vz,a' € K,p(z+a)=p(2)+ (@)

Vo' € K, p(ar') = ¢ () p(2')

p(lk) = 1k

Vi=a+bleKetz' =d +bdecK,

ple+z) = pla+d +b+V)d)=a+ad —(b+b)4
= a—-bi+d -bi=¢(x)+e(z)
p(za’) = ¢(ad +b'6* + (ab' +a'b)d) = ad' + bb'6> — (ab/ + a'b) &

= (a—bd)(a" = V'0) = p () p ()

De plus, ¢ (1) = 1.
Donc ¢ est un morphisme de corps.

On a Vz € K,p (¢ (x)) = x donc ¢ est bijective.

(a) Sty () =9 (y) alors

r+0 y+9o
r—6 y—20
donc
zy+0(y—x)—02 =xy+6(z—y) — 0o
donc

§(y—x)=0(x—y)
doncy —x =z —y (car § #0 ) donc x = y. Donc ¢ est injective.
(b) Va,b € Z avec b# 0, on a

avec 0 = a+bd € K\ {0}

Donc ¥ (Q) C {2,9 € K\ {0}}
Comme 1 est injective card (¢ (Q)) = card (Q) = +oo
Donc {Z, 6 € K\ {0}} est infini.

PARTIE IV

Vi, j e {1,...,n},
n n n
g a; kb, = E a; kb, = E @i 1Ok,
o1 k=1 k=1

car ¢ est un morphisme de corps. Donc AB = AB.



20. Si F € GL, (K) alors 3G € GL, (K) tel que FG = I,

21.

22.

Mais alors FG =1, = I, = FG donc F € GL, (K) et (F) =G =F-!
Si F' € GL, (K) alors (TF) =F e GL,(K).
Finalement F' € GL, (K) ssi F' € GL, (K) et (F)_l =F-1
(a) SiX=F (f)_l alors
XX =F(F) xFF) =1,

(b)

i.

ii.

— 0 0
Si 0 # 0 et si F () n’est pas inversible alors X + 51}, n’est pas inversible donc —= est une racine du

polynoéme caractéristique de X. Ce polynéme complexe est de degré p donc il admet au plus p racines.

0 0
Or l’ensemble {@’ 0 € K\ {O}} est infini donc il existe 6y tel que 9:0 n’est pas racine de ce polyndme
_ 0
donc tel que 60X + 0o, est inversible.

Attention : Si A est un anneau commutatif et si P € A[X] est de degré p alors P peut avoir plus de

Exemple : X3 — X dans Z/6Z, tous les éléments de A sont des racines !!!
Si P,@Q € A[X] et si @ est unitaire alors 3D et R € A [X] tels que P = DQ + R avec deg R < deg Q.

XX F(0p) =Xx (%Ip + GOY) = 00X +00XX = 0yX+00I, = F (6y) donc comme F () est inversible
on a

X = F(00) x (F00))

(c) Supposons qu'il existe F' € GL, (K) telle que F~'AF et F~'BF appartiennent & M, (Q).

X 1AX =4
Réciproquement, supposons 3X € GL, (K),{ X 'BX =B
X

D’apres la question 21.b.ii. 3F € GL, (K),
Et donc

Donc F-TAF = F-LAF = F-TAF = (F) " AF et

FF'AF(F) ' =4

donc si on pose X = F (F)_l on a bien X' = FF~! et donc

X 1AxX =4

De méme, X 'BX = B.
Et d’aprés la question 21.a. XX = I,

X 'AX = A& FF'AF(F) =4
& F'AF=(F) 'AF = F TAF

donc F~'AF € M, (Q) et de méme pour B.

x=( % Y
(a) NotonsX—<Z t>

XA = AX@<$ y)(
z 1

A

0
zA yA\ zA
2 th )z

& zz=0ett=0



Doncy #0et z =

Yy
et finalement X = 0

Q| =

_( 0y v_ (0 vy 09\ _(yvz 0 _
DoncX—(z())etXX—(zO)(zO = 0 g2 =1
0
1
y

Réciproquement, si il existe u € K\ {0} tel que X = (

gll—o
o g
~—

Alors XX =15 et

Ao\ (0w 0 Au
AX_(O /\)(1())_ i 0
U u
0 u T 0 lu
_ X 0 e
X = (1 o)(o A>_ Ay
u u
donc X 1AX = A.
(b) det A =det (F~'AF) =1 = det B.
X 1AX =A
D’aprés la question 21.c. 3X € GLs (K) telle que { X '!BX =B
XX =1

Et donc d’aprés 22.a. Ona X = (

(z)(!

gll—o
o g
S~

Et BX = X B donne

e —=o
o =
~
7N
ol 9l
Ul
N~

d a b
ce qui implique — = 2 donc d =@, et — = uc

u u u
det B = (cL Z =aa — bc =1 et bc = ucuc = zT avec T = uc.
On a donc bien @@ — 1 = 27 donc N (a) — 1= N (z).

23. det By =ad —bc=1

24.

det (A1 +B1)=(a+d+a)(a—d+d)—bc=1

Donc (a+0)d+ (= d)a+a? —6*=0donc a(d+a)+0(d—a)+1=0
Et finalement, § (a — d) = 2am; + 1 et

2amq + 1

a—d= 5

(a) Onax,(X)=X2-TrAX +detA=X?—-2aX +1
A =402 — 4 = 46% donc les racines de y, sont a +d € K et a — 6 € K.
Comme § ¢ Q on a § # 0 et donc la matrice A € My (K) posséde deux valeurs propres distinctes dans
K et donc elle est diagonalisable dans Mj (K). C’est—a-dire, il existe une matrice P € GLz (K) telle que

_1 o a+4d 0 -
P AP_< 0 a_d)_AL

(b) Soit By = P"1BP = < CCL Z ) alors det (A + B) = det (P! (A+ B) P) =det (4, + B;) =1
2 1
D’aprés la question 23 ona a —d = %

Comme PB;P~' = B et PA; P~ = A sont dans SLy (Q), la question 22.b) nous donne d =@ et 3z € K
tel que aa — 1 = z7.



2 1 d a oam+ &
Onaa—%:aetm:a; :a;a:a_FTQ
1
mo —am — =
Finalement, a = 5 2
1
mé —am— — —md —am — —
) -0
1\2
(am+2> —m26% + &
1\2
<am+2> —(aQ—l) (m2—1)

(¢) Sens direct :

2
On a (am + ;) —(@?=1)(m*-1) = —0%2T = (8z) (6z) donc on prend y = dxz et zoup.

2
Réciproque : Si (ozm + ;) —(@?=1)(m?*-1)=yy

Alors on pose = = % € K car § # 0 et on obtient le résultat précédent.

PARTIE VI

25.

(a) Vo € Z/9Z, 2% — 3z € {0,2,7}

Donc pour z = 0,2% — 32 = 0[9], pour z = 2,2% — 32 = 2[9] et pour x = 4,2% — 32 = 7[9].
(b) On a M? = (TrM) x M — det M x I d’aprés Cayley-Hamilton.

Donc M3 = (TrM) x M? — M car M € SLy (Z).

On obtient en prenant la trace de chaque coté :

Tr (M?) = (TrM)x (TrM?) —Tr(M)
= (TrM) x ((TrM)? = 2) = Tr (M)
= (TrM)® —3Tr (M)

i. OnaTr(A%) +Tr (B3 =Tr(C®) et VM € SLy (Z),Tr (M?) = {
M

Notons que VM € SLy (Z),det (—M) = (=1)>det M =1 et Tr (—

e Si Tr (A3) =2[9] alors
soit T'r (33) =0[9] et Tr (03) =2[9] et alors on prend A; = B,By=Aet C; =C
soit Tr (B®) = 71[9] et Tr (C?) = 0[9]
alors on prend A1 =C,By =—-BetC; = A

e SiTr(A%) =7[9] alors on a (=A)* + (—B)* = (-C)* avec Tr ((—A)?’) = 2[9] donc on est ramené
au cas précédent avec —A, —B et —C' 4 la place de A, B et C.

e SiTr (A3) =0[9] alors
soit Tr (B?) = 21[9] et Tr (C?) = 2]
soit Tr (B®) =71[9] et Tr (C3) = 7]
On prend 41 = —A,B; =—-Bet C;

9] et alors on prend 4; = A, By = B et C, = C.
9]
=-C.



26.

(a)

ii. On a det <B1) = (det.Bl) =1 et de méme det (C’l) =1.
OnaTr(B})=Tr (B1)* [3] d’aprés la question 25.b.
Et d’apres le petit théoréme de Fermat Tr (By)* = Tr (By) [3]
Or Tr (By)* = 2[9] donc T (B;)” = 2[3] et finalement T'r (Bl) =2 et donc
X, (X) =X 92X +i= (x —1)°
et de méme pour Cj ...

iii. Comme le polynome caractéristique de By est scindé, elle est trigonalisable sur le corps Z/3Z.

Donc comme sa seule valeur propre est 1 elle est semblable & une matrice qui s’écrit < (1) ]16 > avec

k € Z/3Z. Et méme raisonnement pour Cj.
. 3 . .
. 1 k 1 0
.3 .3 .3 ‘
Donc B; est semblable & I et donc By = Iy et de méme C; = I,. Or, A3 = C} — B} donc
A3 =C? - B} =0,

Or det A; = 1 ce qui donne une contradiction !

Notons
(4am +2) — ((2a)2 - 4) ((2m)2 - 4) =922 16[9]
car 2a = 0[9] et 2m = 0[9] et donc
(dam +2)> — ((204)2 - 4) ((2m)2 - 4) =69]

De plus

(4zd)® — ((2a)2 - 4) 2yd)?® = (dad)® +4(2yd)? [9]
(4zd)” + (2yd)* [3]

Par ailleurs, on a

(4ad)? — ((2@)2 - 4) (2yd)? = 642 [9]
d’aprés le calcul précédent, et donc finalement
(4zd)* + (2yd)? = 64> [3] = 0[3]

0[3]

Les carrés dans Z/3Z sont 0 et 1 donc Vt € Z,t? = { 1[3]

Donc une somme de deux carrés n’est congrue & 0 modulo 3 que si chaque carré est congru a 0 modulo 3

et donc
(42d)® + (2yd)*> = 0[3] = (42d)* = 03] et (2yd)* =0[3]

Par suite, 4xd = 0[3] et 2yd = 0[3].

D’aprés ce qui précede en élevant au carré, on a (4zd)” = 0[9] et (2yd)* = 0[9] donc
(42d)” — ((20) = 4) (29)* =0 [9
donc en utilisant (++)
2 ((4am 1 2)2 ((2a)2 - 4) ((2m)2 - 4)) = 6d2[9] = 0[9]

Donc 2d? = 0[3] donc d? = 03] donc d = 0[3] et 3 divise d.



27.

28.

29.

30.

31.

32.

(5)

(d) On adxd = 4r = 0[3] donc r est multiple de 3 et d également donc z = TN de méme on a 2yd = 2s = 0[3]
(5)
(5)
3 d
donc s est multiple de 3 et on a y = (?i donc 3 est un dénominateur commun de x et y ce qui est
)

contradictoire avec la définition de d qui est la plus petit dénominateur commun.

D’apres la conclusion de la partie V' si de telles matrices U et V existaient alors on aurait une relation de la
forme

(am+;>2—(a2—1) (m?—1) = u? — (a? — 1) 2

avec u,v € Q et ¢a c’est impossible d’apres la question 26 si 2a = 0[9] et 2m = 0[9].

Si A% + B3 = C? avec A, B,C € SLy(Z) alors Tr (A%) = 0[9] et Tr (B*) = 0[9]. Donc si on pose U = A% et
V = B3 on a bien U,V € SL, (Z)

Tr(U)=0[9) et Tr (V) =01[9] et det (U + V) = det (C?) =1
D’apres la question 27 ces matrices U et V ne peuvent exister donc il n’existe pas de solution dans SLs (Z)
de I’équation X3 4+ Y3 = Z3.
De plus, si n est multiple de 3, on note n = 3k et I’équation X" + Y™ = Z" s’écrit
(X%’ + (3)* = (29)°
avec X3,Y3 7% € SLy(Z) qui n’a pas de solutions.

PARTIE VII

Si M € M, (C) est k périodique alors le polynome X* — 1 est un polynéome annulateur de M. Or, Xk — 1 =

Hf;é (X — ewlz‘ﬂ) est scindé a racines simples. Donc M est diagonalisable.

a
c —1—a

a® + be =b 0 -1
X2: :A:
ot ( —c bc—|—(1—|—a)2) (1 —1)
Donconab=1etc=—1donca?—1=0et -1+ (1+a)’=-1

donc(1+a)2:0donca:—1.DoncX:(:1 é):B

(a) NotonsX< >onaa(1+a)bc1d0nca2+bca1

A2 =—A—I,donc A3=—-A2—-—A=1,
Donc X6 = I, et donc X est 6— périodique donc 12— périodique...
2
(b) A% = < (1) :} ) = < :1 (1) ) = BetY = A est 3— périodique

(c) Soit Z = ( Pl (1] ) on a Z? = —I, = C et donc Z est 4— périodique donc 12 périodique

et comme A + B = C on peut écrire X? +Y?2 = Z2 avec X,Y et Z toutes 12— périodiques.
On an =2+ 12k avec k € Z et donc Pour toute matrice M : 12— périodiques on a
M™ = M2H12k g2 (M12)k — M2 (IZ)k — M2
Donc comme les matrices de la question précédente sont 12— périodiques et vérifient X2 +Y?2 = Z2 elles vérifient
également X" +Y" = 2",

Les matrices X,Y et Z sont inversible et leur inverse est dans SLs (Z), de plus elles vérifient X2 + Y2 = 2?2
donc le triplet de matrice X1, Y1, Z71 est solution de X2 + Y2 = 772

Si m = —2[12] pour toute matrice M : 12— périodique on a M2 = M"

Finalement, on a bien (X_l)n + (Y‘l)n = (Z_l)n.



33. A et B sont 3— périodique et C est 2— périodique donc elle sont toutes 6— périodiques et donc

Vk € 7, AVTOk L pIH6k — A 4 B = ¢ = O1*6k

Deplus A-' + B ' =B+ A=C=C"" et donc

Vk € Z,A_1+6k 4 B—1+6k — C—1+6k'

Finalement, si n = £1[6] le triplet (A, B, C) est solution de X™ +Y" = Z".

34. Sin =0][6] oun = 3[6] alors n est multiple de 3 et ’équation X™ + Y™ = Z" n’admet pas de solution d’aprés
la partie VI.

Sin =1[6] oun =5][6] alors il y a des solutions (question précédentes)

Sin = 2[6] on a n = 2+ 6k alors soit k est pair et n = 2[12] et il y a des solutions, soit k est impair et
n=24+6(2p+1)=8+12p =4(2+ 3p) donc n est multiple de 4 et on a pas de solutions.

Sin =4[6] on a n =4+ 6k alors soit k est pair et n est multiple de 4 donc pas de solutions, soit k est impair
etn=4+6(2¢+1) =10+ 12¢g donc n = —2[12] et il y a des solutions.

PARTIE VIII : Réseaux de q-.

35. R ={v1,...,v) donc c’est un sous-groupe de (Q™,+).

36. Sin=1,R =2Zv, +... + Zv,, avec vy, ..., Uy € Q soit d le ppcm des dénominateurs de vy, va, ..., vy, alors il existe

des entiers aq, ..., a,, tels que Vi,v; =

E.

Les éléments de R sont de la forme

m

i kiai o Zi:l kz’ai
P d d

avec k; € Z.

{>°% | kia;} est le sous-groupe de (Z, +) engendré par les entiers a; et donc c’est pZ avec p = pged (a1, az, ..., an,) -

Finalement, R = rZ avec r = g.

d

r n’est pas unique car —r marche aussi.

37. Comme 7 est un morphisme de groupe de (Q", +) dans (Q,+) on a

38.

Veer(R),z=m (Z kﬂh‘) = Zkﬂ (vi)
i=1 i=1

donc on est ramené a la situation de la question précédente. Donc il existe s € Q tel que 7w (R) = sZ.
Du coup s € 7 (R) donc Jw € R, 7 (w) = s et on a bien 7 (R) = 7 (w) Z.

(a)

(b)

7w (z) € m(w)Z donc 3q € Z,m(x) = qm (w) = 7 (qw) et donc si on pose T = = — qw alors T € R et on
am(Z) =m(xr) —7(qw) = 0. Donc & € Q" ! x {0}. Finalement, on a bien * = qw + & avec q € Z et
e Q" x{0}nR.

Sizx =qu+Z=pwt+gavecpcZetyec Qx{0}NR. Alors -9 = (p—q)w et 7(Z) = 7(9)
donc 7 (Z —¢) = 0 et donc (p—¢)7(w) = 0 donc soit p = ¢ et alors £ = § soit 7 (w) = 0 et donc
m(R) =7 (w)Z ={0} et donc w = (0,0,...,0) et donc Z = 3.

Donc Z est unique. Par contre si on remplace w par —w alors —q est un entier qui donne la relation donc
I’entier ¢ n’est pas unique.

39. En utilisant la question 38 appliqué a v ..., v, on peut écrire

m

VreR,x= Zkivi = ikzz@ —I—ikziqiw
i=1 i=1

i=1

et comme Y. k;0; € Q"' x {0} N'R l'unicité vu ci-dessus nous dit que & = >\, k;0;
Size Q" ! x{0}NR alors z =z + 0w donc z =% = Y ;- k;0; et donc on a bien

Q' x{0}NR = {Z kilk, .oy ko € z}
i=1



40. Sin =1 alors on a vu qu’il existe r € Q tel R = rZ donc u; = r convient.

Supposons le théoréme vrai pour la dimension n—1, et soit R C Q™ on a que Q"' x{0}NR ={>_" | kiv;|k1, ..., km € Z}
est de dimension n — 1 donc il existe u1,...,u, € Q"1 x {0} NR tels que Q" ! x {0} NR = Zu; & ... ® Zu,

Et donc R = Zu; @ ... © Zu, © Zw ce qui conclut la récurrence.
41. Si (uq, ..., up) est une Z base de R alors Vi, v; € vect (u, ..., up) donc la famille uq, ..., u, est une famille génératrice
de Q" (car la famille (vq,...,v,,) est génératrice). Donc p > n.

Supposons qu’il existe ¢i, ..., q, € Q tels que 7, ¢;u; = 0gr» En multipliant par le dénominateur commun des
fraction g; on obtient Y .7_, kju; = Oqn avec k; € Z mais alors Vi, k; = 0 car (uy, ..., u,) est une Z base et donc
Vi,q; = 0 et donc la famille (w1, ...,u,) est libre.

Finalement, la famille (w1, ...,u,) est une base de Q™ et donc n = p.

PARTIE I

42.
(a) I, € G car c’est I’élément neutre de SL, (Q) et donc Vi,e; € M C H.
(b) Vy e Monay=Ne; ouy=—Ne; avec N € G donc VM € G,My = (MN)e; ou My =— (MN)e; donc
My e M.Doncsih=>%7 yonaMh=>% 7 My cH.
p a; . a; a; 1 k;
(c) Ona Mej =37 | aje; avec a; = ™~ € Q et tels que Vi,a;d = k; € Z et donc 5 =5 x d x =3
Si on fait la division euclidienne de k; par d, on obtient k; = ¢;d + r; avec 0 < r; < d et donc
k. p r; p 1&
Me; = dei = Z ((JH- E) € = Zqz'erl- &Zriei
=1 =1 =1 =1
(d) La famille (61, ey Epy %1, - %) est Z génératrice de Me; pour tout M dans G et pour tout j et donc une
somme et différence d’éléments de ce type est toujours dans le sous-groupe engendré par (61, s €py %1, - %p)
et cette famille est génératrice car (eq, ..., e,) est une base de QP.
(e) D’apres la question 40 il existe (uq,...,u,) une Z base de H et comme d’apres le b) Mu; € H il existe des
entiers k; tels que Mu; = > 5 kju;.
(f) Soit F la matrice de passage de la base (e, ...e,) & la base (u1, ..., u,) alors VM € G, les coefficients de Mu;
dans la base (u1, ...,u,) sont des entiers donc F~'MF € SL, (Z).
43.

(a) On A% —tr (A) A+ Iy = 05 (Cayley-Hamilton) donc A (A —tr (A) I) = —Iy donc A~ =tr (A),— A€ K
car tr (A) € Z. De méme pour B~1.

(b) (ABAB) = (AB)? =tr (AB)AB—L, € K
A% = tr (A)A — Iy € K de méme pour B? et BA (car tr (AB) = tr (BA))et on montre facilement par
récurrence que Vn € N,A" € K, B" € K, (AB)" € K et (BA)" € K.

Donc si on prend m € K alors MA € K et MB € K et du coup tout produit de matrice A, B, A=, B~!
est dans K.

Donc G C K.



