
Correction Agrèg interne ep1 2022

Rappel : théorème spectral :
Si A est une matrice n × n symétrique réelle alors il existe une matrice D diagonale et une matrice P orthogonale (
i.e. P−1 = PT ) telles que A = PDP−1 = PDPT .

Vrai ou faux

1.

(a) Faux car ∀M,N ∈Mn (C) , tr (MN) = tr (NM)

En effet si on note M = (mi,j) et N = (ni,j)

tr (MN) =

n∑
i=1

n∑
k=1

mi,knk,i =

n∑
k=1

n∑
i=1

mi,knk,i =

n∑
k=1

n∑
i=1

nk,imi,k = tr (NM)

Si M =


L1
L2
...
Ln

 et N =

(
C1

C2 · · · Cn

)
Alors MN =


〈L1, C1〉

〈Li, Cj〉


〈Li, Cj〉 = mi,1n1,j +mi,2n2,j + ... =

n∑
k=1

mi,knk,j

(b) Si A =

(
a b
c d

)
∈M2 (C) alors

χA (X) = det

(
X − a −b
−c X − d

)
= X2 − (a+ d)X + ad− bc

χA (X) = X2 − tr (A)X + detA

Donc VRAI.

(c) Si A =

(
1 i
i −1

)
alors trA = 0 et detA = 0 donc χA (X) = X2 donc la seule valeur propre est

0, donc si A est diagonalisable alors A la matrice diagonale associée est la matrice nulle donc il existe
P ∈ GL2 (C) , A = P0nP

−1 = 0n donc c’est FAUX car A 6= 0n.

(d) Si ϕ : Z→ R, n→ n. donc FAUX.

Exercice préliminaire

2. Montrons par récurrence sur d ≥ 2 que χCP (X) = P (X)

Si d = 1, CP = (−a0) donc χCP (X) = X + a0 = P (X) .

Si d = 2, CP =

(
0 −a0
1 −a1

)
donc

χCP (X) =

∣∣∣∣ X a0
−1 X + a1

∣∣∣∣ = X2 + a1X + a0 = P (X)

Supposons le résultat vrai pour un entier d fixé.
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Soit P = Xd+1 +
∑d
i=0 aiX

i alors

χCP (X) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

X · · · · · · 0 a0

−1 X
... a1

0 −1
. . .

...
...

...
. . .

. . . X ad−1
0 · · · 0 −1 X + ad

∣∣∣∣∣∣∣∣∣∣∣∣∣
= X

∣∣∣∣∣∣∣∣∣∣
X 0 0 a1

−1
. . . 0

...

0
. . . X ad−1

0 0 −1 X + ad

∣∣∣∣∣∣∣∣∣∣
+ (−1)

d+2
a0

∣∣∣∣∣∣∣∣∣∣
−1 X 0 0

0 −1
. . . 0

...
. . .

. . . X
0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣
= X

(
Xd + adX

d−1 + ...+ a2X + a1
)

+ (−1)
d+2

a0 (−1)
d

= Xd+1 + adX
d + ...+ a2X

2 + a1X + a0 = P (X)

Donc le résultat est vrai par récurrence.

3.

(a)

i. Soit u ∈ L (Cp) , l’application linéaire dont la mtrice par rapport à la base canonique est M .
La famille

{
x,Mx, ...,Mµ−1x

}
est libre par définition de µ. On complète cette famille pour obtenir

une base B de Cp.
La famille {x,Mx, ...,Mµx} est liée donc il existe des coeffi cients (αi)i∈[[0,µ−1]] tels queM

µx+αµ−1M
µ−1x+

...+ α1Mx+ α0x = 0Cp

Dans la base B la matrice de u s’écrit

Mx M2x · · · · · · Mµx ∗

M ′ =



0 0 −α0 ∗
1 0 −α1 ∗

0 1
...

... 0
. . .

...
...

...
. . . 1 −αµ−1 ∗

O O · · · O O N



x
Mx
...

Mµ−1x
∗

ii. Notons P = Xµ + αµ−1X
µ−1 + ...+ α1X + α0

La matrice précédente est

M ′ =

(
CP ∗

0p−µ N

)
donc χM ′ (X) = det

(
XIµ − CP ∗

0p−µ XIp−µ −N

)
= χCP (X)× χN (X) = P (X)× χN (X)

Donc χM ′ (M) = P (M)× χN (M) = χN (M)× P (M)

Par définition de P on a P (M)x = Mµx+ αµ−1M
µ−1x+ ...+ α1Mx+ α0x = 0Cp

Donc χM ′ (M)x = 0Cp mais comme M ′ est semblable à M , χM = χM ′ donc χM (M)x = 0Cp .

(b) ∀x ∈ Cp, χM (M)x = 0Cp donc χM (M) = 0L(Cp) donc χM est annulateur de M (théorème de Cayley-
Hamilton).

Problème
I. Exemple dans S+p (R)

4. Il faut prendre comme produit scalaire sur Rp celui défini par ∀X,Y ∈ Rp, 〈X,Y 〉 = tXY

On a ∀X,Y ∈ Rp, 〈a(X), Y 〉 = t (AX)Y = tXtAY = tXAY car A est symétrique et donc ∀X,Y ∈
Rp, 〈a(X), Y 〉 = 〈X, a (Y )〉 donc a est symétrique.
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5. Si ∀Y ∈ Cp, tY SY ≥ 0 alors ∀λ : valeur propre de S si on choisit X un vecteur propre associé on a

tXSX = tX (λX) = λ
(
tXX

)
≥ 0

Or, tXX = ‖X‖2 > 0 car X est non-nul donc λ ≥ 0. Donc toutes les valeurs propres sont positives et donc
S ∈ S+p (R) .

Réciproquement si on suppose que S ∈ S+p (R) alors S est diagonalisable dans une base orthonormée (théorème
spectral), c’est-à-dire qu’il existe P inversible telle que S = P−1DP avec P−1 = tP .

Donc ∀Y ∈ Rp, tY SY = tY tPDPY = t (PY )D (PY ) Notons δ1, ..., δn les valeurs propres (positives) de S et
notons PY = (p1, ..., pn) alors

tY SY = δ1p
2
1 + δ2p

2
2 + ...+ δnp

2
n ≥ 0

car

 δ1 0 0

0
. . . 0

0 0 δn


 p1

...
pn

 =

 δ1p1
...

δnpn


6. ∀Y ∈ Rp, tY SY ≥ 0 et tY TY ≥ 0 donc tY SY + tY TY ≥ 0 donc tY (S + T )Y ≥ 0

Comme S + T est symétrique, d’après la question précédente S + T ∈ S+p (R) .

7. On peut écrire S = P−1DP avec D =

 δ1 0 0

0
. . . 0

0 0 δn

 avec ∀i ∈ [[1, n]] , δi ≥ 0.

Soit αi = n
√
δi alors si on note A =

 α1 0 0

0
. . . 0

0 0 αn

 on a An = D.

Donc
(
P−1AP

)n
= P−1AnP = P−1DP = S donc on peut choisir R = P−1AP.

8.

(a) Rappel : si f et g ∈ L (E) commutent alors ker f est stable par g
(du coup f − αid et g commutent également et donc les sous-espaces propres de f sont stables par g ).
Preuve : Soit x ∈ ker f, alors f (g (x)) = g (f (x)) = g (0E) = 0E donc g (x) ∈ ker f .
Ici on a U ×S = U ×Un = Un+1 = Un×U = S×U . Donc s et u commutent donc tout sous-espace propre
de s : Eλi (s) = ker (s− λiid) est stable par u.
D’autre par ∀x, y ∈ Rp, 〈u (x) , y〉 = 〈x, u (y)〉 donc en particulier ∀x, y ∈ Eλi (s) , 〈u (x) , y〉 = 〈x, u (y)〉
donc la restriction de u à Eλi (s) induit ui : Eλi (s)→ Eλi (s) , x→ u (x) .

(b) Soit α une valeur propre de ui donc il existe x ∈ Eλi (s) non nul tel que ui (x) = αx mais alors uni (x) =
un (x) = αnx = s (x)

Or, s (x) = λix car x ∈ Eλi (s) = ker (s− λiid). Finalement, αnx = λix donc αn = λi. Or U, S ∈ S+p (R)

donc α ≥ 0 et λi ≥ 0 donc α = n
√
λi.

(c) La matrice de ui est réelle est symétrique donc ui est diagonalisable et sa seule valeur propre c’est n
√
λi

donc ui = n
√
λiid

Comme s est diagonalisable on a Rp = Eλ1 (s)⊕ Eλ2 (s)⊕ ...⊕ Eλq (s)

Donc ∀x ∈ Rp, il existe des xi ∈ Eλi (s) uniques tels que x =
∑q
i=1 xi

Et u (x) =
∑q
i=1 u (xi) =

∑q
i=1 ui (xi) =

∑q
i=1

n
√
λixi

Donc u est déterminé de façon unique.

9. Relire les deux questions précédentes...

10. ∀U, V ∈ S+p (R) ,
(
n
√
U
)n

+
(
n
√
V
)n

= U + V =
(
n
√
U + V

)n
Donc ψ est bien définie.

Si ψ (U, V ) = ψ (U ′, V ′) alors n
√
U = n

√
U ′ donc

(
n
√
U
)n

= U =
(
n
√
U ′
)n

= U ′ donc U = U ′ et de même V = V ′

donc ψ est injective.
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Soit (X,Y, Z) ∈
(
S+p (R)

)3
tels que Xn + Y n = Zn alors Soit U = Xn et V = Y n on a bien ψ (U, V ) =(

X,Y, n
√
Xn + Y n

)
car la racine ne de Xn est X et on a n

√
Xn + Y n = n

√
Zn = Z par unicité de la racine ne.

Donc ψ est surjective.

Finalement, ψ est une bijection.

PARTIE II
11. ∀M ∈M2 (Z) ,M2 = (trM)×M − (detM) I2 d’après Cayley-Hamilton.

Donc ∀M ∈ SL2 (Z) ,M2 = (trM)×M − I2
Et donc

tr
(
M2
)

= (trM)
2 − 2.

∀M ∈ SL2 (Z) ,M2 ∈ SL2 (Z) donc en appliquant la formule précédente à M2 on obtient

tr
(
M4
)

=
(
tr
(
M2
))2 − 2

=
(

(trM)
2 − 2

)2
− 2

= (trM)
4

+ 4− 4 (trM)
2 − 2

tr
(
M4
)

= (trM)
4 − 4 (trM)

2
+ 2

12. 02 ≡ 0 [8] ; 12 ≡ 1 [8] ; 22 ≡ 4 [8] ; 32 ≡ 1 [8] ; 42 ≡ 0 [8] ; 52 ≡ 1 [8] ; 62 ≡ 4 [8] ; 72 ≡ 1 [8]

Si (trM)
2 ≡ 0 [8] alors (trM)

4 ≡ 0 [8] et tr
(
M4
)
≡ 2 [8]

Si (trM)
2 ≡ 1 [8] alors (trM)

4 ≡ 1 [8] et tr
(
M4
)
≡ 1− 4 + 2 [8] ≡ −1 [8]

Si (trM)
2 ≡ 4 [8] alors (trM)

4 ≡ 0 [8] et tr
(
M4
)
≡ −4× 4 + 2 [8] ≡ 2 [8]

Dans tous les cas, on a bien tr
(
M4
)
≡ 2 [8] ou tr

(
M4
)
≡ −1 [8]

13. Si X4 + Y 4 = Z4 alors tr
(
X4
)

+ tr
(
Y 4
)

= tr
(
Z4
)

Mais tr
(
X4
)

+ tr
(
Y 4
)
≡

 4 [8]
1 [8]
−2 [8]

et tr
(
Z4
)
≡
{

2 [8]
−1 [8]

donc tr
(
Z4
)
6= tr

(
X4
)

+ tr
(
Y 4
)
et donc il n’y a

pas de solutions à X4 + Y 4 = Z4 dans SL2 (Z) .

14. Si 4 divise n alors n = 4p avec p ∈ Z donc l’équation est X4p+Y 4p = Z4p qui peut s’écrire (Xp)
4
+(Y p)

4
= (Zp)

4

: impossible d’après la question précédente car Xp, Y p, Zp ∈ SL2 (Z) .

PARTIE III
RAPPELS : K = Q (δ) = {a+ bδ|a, b ∈ Q} avec δ2 ∈ Q et ϕ (a+ bδ) = a+ bδ = a− bδ.

15. K ⊂ C : Q− espace vectoriel.
Méthode 1 (classique) :

Si x = a+ bδ ∈ K et y = a′ + b′δ ∈ K alors

∀α ∈ Q,x+ αy = (a+ αa′) + (b+ αb′) δ ∈ K

Méthode 2 (sioux) :

K =vect (1, δ) donc c’est un sous Q−espace vectoriel de C.

Comme δ /∈ Q, la famille (1, δ) est libre sur Q donc K est de dimension 2.

16. (K,+) est un groupe commutatif d’après la question précédente.

Comme K ⊂ C la multiplication est associative et distributive par rapport à l’addition. 1 = 1 + 0 × δ ∈ K est
un élément neutre pour la multiplication. De plus ∀x = a+ bδ ∈ K et y = a′ + b′δ ∈ K on a

xy = aa′ + (ab′ + a′b) δ + bb′δ2

=
(
aa′ + bb′δ2

)
+ (ab′ + a′b) δ ∈ K
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car δ2 ∈ Q.
Donc K est un sous-anneau de C.

Soit x = a+ bδ ∈ K, si x 6= 0, comme a− bδ 6= 0 car δ /∈ Q, on a

1

x
=

1

a+ bδ
=

a− bδ
(a+ bδ) (a− bδ) =

a− bδ
a2 − b2δ2

=
a

a2 − b2δ2
− b

a2 − b2δ2
δ ∈ K

Donc l’inverse de x est dans K et donc K est un corps.

17. Un morphisme de corps c’est juste un morphisme d’anneaux où les anneaux de départ et d’arrivée sont des corps.

Donc, il faut montrer que

∀x, x′ ∈ K, ϕ (x+ x′) = ϕ (x) + ϕ (x′)

∀x, x′ ∈ K, ϕ (xx′) = ϕ (x)ϕ (x′)

ϕ (1K) = 1K

∀x = a+ bδ ∈ K et x′ = a′ + b′δ ∈ K,

ϕ (x+ x′) = ϕ (a+ a′ + (b+ b′) δ) = a+ a′ − (b+ b′) δ

= a− bδ + a′ − b′δ = ϕ (x) + ϕ (x′)

ϕ (xx′) = ϕ
(
aa′ + bb′δ2 + (ab′ + a′b) δ

)
= aa′ + bb′δ2 − (ab′ + a′b) δ

= (a− bδ) (a′ − b′δ) = ϕ (x)ϕ (x′)

De plus, ϕ (1) = 1.

Donc ϕ est un morphisme de corps.

On a ∀x ∈ K,ϕ (ϕ (x)) = x donc ϕ est bijective.

18.

(a) Si ψ (x) = ψ (y) alors
x+ δ

x− δ =
y + δ

y − δ
donc

xy + δ (y − x)− δ2 = xy + δ (x− y)− δ2

donc
δ (y − x) = δ (x− y)

donc y − x = x− y (car δ 6= 0 ) donc x = y. Donc ψ est injective.

(b) ∀a, b ∈ Z avec b 6= 0, on a

ψ
(a
b

)
=

a

b
+ δ

a

b
− δ

=
a+ bδ

a− bδ =
θ

θ̄

avec θ = a+ bδ ∈ K\ {0}

Donc ψ (Q) ⊂
{
θ

θ̄
, θ ∈ K\ {0}

}
Comme ψ est injective card (ψ (Q)) = card (Q) = +∞

Donc
{
θ

θ̄
, θ ∈ K\ {0}

}
est infini.

PARTIE IV
19. ∀i, j ∈ {1, ..., n} ,

n∑
k=1

ai,kbk,j =

n∑
k=1

ai,kbk,j =

n∑
k=1

ai,kbk,j

car ϕ est un morphisme de corps. Donc AB = AB.
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20. Si F ∈ GLp (K) alors ∃G ∈ GLp (K) tel que FG = Ip

Mais alors FG = Ip = Ip = FG donc F ∈ GLp (K) et
(
F
)−1

= G = F−1.

Si F ∈ GLp (K) alors
(
F
)

= F ∈ GLp (K) .

Finalement F ∈ GLp (K) ssi F ∈ GLp (K) et
(
F
)−1

= F−1.

21.

(a) Si X = F
(
F
)−1

alors

XX = F
(
F
)−1 × F (F )

−1
= Ip

(b)

i. Si θ̄ 6= 0 et si F (θ) n’est pas inversible alors X +
θ

θ̄
Ip n’est pas inversible donc −

θ

θ̄
est une racine du

polynôme caractéristique de X. Ce polynôme complexe est de degré p donc il admet au plus p racines.

Or l’ensemble
{
θ

θ̄
, θ ∈ K\ {0}

}
est infini donc il existe θ0 tel que

θ0

θ0
n’est pas racine de ce polynôme

donc tel que θ0X + θ0Ip est inversible.
Attention : Si A est un anneau commutatif et si P ∈ A [X] est de degré p alors P peut avoir plus de
p racines !!!!!
Exemple : X3 −X dans Z/6Z, tous les éléments de A sont des racines !!!
Si P,Q ∈ A [X] et si Q est unitaire alors ∃D et R ∈ A [X] tels que P = DQ+R avec degR < degQ.

ii. X×F (θ0) = X×
(
θ0Ip + θ0X

)
= θ0X+θ0XX = θ0X+θ0Ip = F (θ0) donc comme F (θ0) est inversible

on a

X = F (θ0)×
(
F (θ0)

)−1
(c) Supposons qu’il existe F ∈ GLp (K) telle que F−1AF et F−1BF appartiennent àMp (Q) .

Donc F−1AF = F−1AF = F−1AF =
(
F
)−1

AF et

FF−1AF
(
F
)−1

= A

donc si on pose X = F
(
F
)−1

on a bien X−1 = FF−1 et donc

X−1AX = A

De même, X−1BX = B.
Et d’après la question 21.a. XX = Ip

Réciproquement, supposons ∃X ∈ GLp (K) ,


X−1AX = A
X−1BX = B
XX = Ip

D’après la question 21.b.ii. ∃F ∈ GLp (K) , X = F
(
F
)−1

Et donc

X−1AX = A⇔ FF−1AF
(
F
)−1

= A

⇔ F−1AF =
(
F
)−1

AF = F−1AF

donc F−1AF ∈Mp (Q) et de même pour B.

22.

(a) Notons X =

(
x y
z t

)

XA = AX ⇔
(
x y
z t

)(
λ 0
0 λ

)
=

(
λ 0

0 λ

)(
x y
z t

)
⇔

(
xλ yλ

zλ tλ

)
=

(
xλ yλ

zλ tλ

)
⇔ x = 0 et t = 0
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Donc X =

(
0 y
z 0

)
et XX =

(
0 y
z 0

)(
0 y
z 0

)
=

(
yz 0
0 yz

)
= I2

Donc y 6= 0 et z =
1

ȳ
et finalement X =

 0 y
1

ȳ
0


Réciproquement, si il existe u ∈ K\ {0} tel que X =

(
0 u
1

u
0

)
Alors XX = I2 et

AX =

(
λ 0

0 λ

)( 0 u
1

u
0

)
=

 0 λu

λ

u
0


XA =

(
0 u
1

u
0

)(
λ 0
0 λ

)
=

 0 λu

λ

u
0


donc X−1AX = A.

(b) detA = det
(
F−1AF

)
= 1 = detB.

D’après la question 21.c. ∃X ∈ GL2 (K) telle que


X−1AX = A
X−1BX = B
XX = I2

Et donc d’après 22.a. On a X =

(
0 u
1

u
0

)
Et BX = XB donne (

a b
c d

)( 0 u
1

u
0

)
=

(
0 u
1

u
0

)(
a b

c d

)

ce qui implique
d

u
=
ā

u
donc d = a, et

b

u
= uc

detB =

∣∣∣∣ a b
c a

∣∣∣∣ = aa− bc = 1 et bc = ucuc = xx avec x = uc.

On a donc bien aa− 1 = xx donc N (a)− 1 = N (x) .

PARTIE V
23. detB1 = ad− bc = 1

det (A1 +B1) = (α+ δ + a) (α− δ + d)− bc = 1

Donc (α+ δ) d+ (α− δ) a+ α2 − δ2 = 0 donc α (d+ a) + δ (d− a) + 1 = 0

Et finalement, δ (a− d) = 2αm1 + 1 et

a− d =
2αm1 + 1

δ

24.

(a) On a χA (X) = X2 − TrAX + detA = X2 − 2αX + 1

∆ = 4α2 − 4 = 4δ2 donc les racines de χA sont α+ δ ∈ K et α− δ ∈ K.
Comme δ /∈ Q on a δ 6= 0 et donc la matrice A ∈ M2 (K) possède deux valeurs propres distinctes dans
K et donc elle est diagonalisable dansM2 (K). C’est—à-dire, il existe une matrice P ∈ GL2 (K) telle que

P−1AP =

(
α+ δ 0

0 α− δ

)
= A1.

(b) Soit B1 = P−1BP =

(
a b
c d

)
alors det (A+B) = det

(
P−1 (A+B)P

)
= det (A1 +B1) = 1

D’après la question 23 on a a− d =
2αm+ 1

δ
Comme PB1P−1 = B et PA1P−1 = A sont dans SL2 (Q), la question 22.b) nous donne d = a et ∃x ∈ K
tel que aa− 1 = xx.
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On a a− 2αm+ 1

δ
= a et m =

a+ d

2
=
a+ a

2
= a+

αm+
1

2
δ

Finalement, a =
mδ − αm− 1

2
δ

aa− 1 =
mδ − αm− 1

2
δ

−mδ − αm− 1

2
−δ − 1

=

(
αm+

1

2

)2
−m2δ2 + δ2

−δ2

=

(
αm+

1

2

)2
−
(
α2 − 1

) (
m2 − 1

)
1− α2

(c) Sens direct :

On a
(
αm+

1

2

)2
−
(
α2 − 1

) (
m2 − 1

)
= −δ2xx = (δx)

(
δx
)
donc on prend y = δx et zoup.

Réciproque : Si
(
αm+

1

2

)2
−
(
α2 − 1

) (
m2 − 1

)
= yy

Alors on pose x =
y

δ
∈ K car δ 6= 0 et on obtient le résultat précédent.

PARTIE VI
25.

(a) ∀x ∈ Z/9Z, x3 − 3x ∈
{

0̇, 2̇, 7̇
}

Donc pour x = 0, x3 − 3x ≡ 0 [9] , pour x = 2, x3 − 3x ≡ 2 [9] et pour x = 4, x3 − 3x ≡ 7 [9] .

(b) On a M2 = (TrM)×M − detM × I2 d’après Cayley-Hamilton.
Donc M3 = (TrM)×M2 −M car M ∈ SL2 (Z).
On obtient en prenant la trace de chaque côté :

Tr
(
M3
)

= (TrM)×
(
TrM2

)
− Tr (M)

= (TrM)×
(

(TrM)
2 − 2

)
− Tr (M)

= (TrM)
3 − 3Tr (M)

(c)

i. On a Tr
(
A3
)

+ Tr
(
B3
)

= Tr
(
C3
)
et ∀M ∈ SL2 (Z) , T r

(
M3
)
≡

 0 [9]
2 [9]
7 [9]

Notons que ∀M ∈ SL2 (Z) ,det (−M) = (−1)
2

detM = 1 et Tr (−M) = −Tr (M) .

• Si Tr
(
A3
)
≡ 2 [9] alors

soit Tr
(
B3
)
≡ 0 [9] et Tr

(
C3
)
≡ 2 [9] et alors on prend A1 = B,B1 = A et C1 = C

soit Tr
(
B3
)
≡ 7 [9] et Tr

(
C3
)
≡ 0 [9]

alors on prend A1 = C,B1 = −B et C1 = A

• Si Tr
(
A3
)
≡ 7 [9] alors on a (−A)

3
+ (−B)

3
= (−C)

3 avec Tr
(

(−A)
3
)
≡ 2 [9] donc on est ramené

au cas précédent avec −A,−B et −C à la place de A,B et C.
• Si Tr

(
A3
)
≡ 0 [9] alors

soit Tr
(
B3
)
≡ 2 [9] et Tr

(
C3
)
≡ 2 [9] et alors on prend A1 = A,B1 = B et C1 = C.

soit Tr
(
B3
)
≡ 7 [9] et Tr

(
C3
)
≡ 7 [9]

On prend A1 = −A,B1 = −B et C1 = −C.
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ii. On a det

(
·
B1

)
=

·
(detB1) = 1̇ et de même det

(
·
C1

)
= 1̇.

On a Tr
(
B31
)
≡ Tr (B1)

3
[3] d’après la question 25.b.

Et d’après le petit théorème de Fermat Tr (B1)
3 ≡ Tr (B1) [3]

Or Tr (B1)
3 ≡ 2 [9] donc Tr (B1)

3 ≡ 2 [3] et finalement Tr
(
·
B1

)
= 2̇ et donc

χ ·
B1

(X) = X2 − 2̇X + 1̇ =
(
X − 1̇

)2
et de même pour C1 ...

iii. Comme le polynôme caractéristique de
·
B1 est scindé, elle est trigonalisable sur le corps Z/3Z.

Donc comme sa seule valeur propre est 1̇ elle est semblable à une matrice qui s’écrit
(

1̇ k
0̇ 1̇

)
avec

k ∈ Z/3Z. Et même raisonnement pour C1.

iv. ∀k ∈ Z/3Z,
(

1̇ k
0̇ 1̇

)3
=

(
1̇ 0̇
0̇ 1̇

)
= I2

Donc
·
B1

3

est semblable à I2 et donc
·
B1

3

= I2 et de même
·
C1

3

= I2. Or, A31 = C31 −B31 donc
·
A31 =

·
C31 −

·
B31 = 02

Or det
·
A1 = 1̇ ce qui donne une contradiction !

26.

(a) Notons

(4αm+ 2)
2 −

(
(2α)

2 − 4
)(

(2m)
2 − 4

)
≡ 22 − 16 [9]

car 2α ≡ 0 [9] et 2m ≡ 0 [9] et donc

(4αm+ 2)
2 −

(
(2α)

2 − 4
)(

(2m)
2 − 4

)
≡ 6 [9]

De plus

(4xd)
2 −

(
(2α)

2 − 4
)

(2yd)
2 ≡ (4xd)

2
+ 4 (2yd)

2
[9]

≡ (4xd)
2

+ (2yd)
2

[3]

Par ailleurs, on a

(4xd)
2 −

(
(2α)

2 − 4
)

(2yd)
2 ≡ 6d2 [9]

d’après le calcul précédent, et donc finalement

(4xd)
2

+ (2yd)
2 ≡ 6d2 [3] ≡ 0 [3]

(b) Les carrés dans Z/3Z sont 0̇ et 1̇ donc ∀t ∈ Z, t2 ≡
{

0 [3]
1 [3]

Donc une somme de deux carrés n’est congrue à 0 modulo 3 que si chaque carré est congru à 0 modulo 3
et donc

(4xd)
2

+ (2yd)
2 ≡ 0 [3]⇒ (4xd)

2 ≡ 0 [3] et (2yd)
2 ≡ 0 [3]

Par suite, 4xd ≡ 0 [3] et 2yd ≡ 0 [3].

(c) D’après ce qui précède en élevant au carré, on a (4xd)
2 ≡ 0 [9] et (2yd)

2 ≡ 0 [9] donc

(4xd)
2 −

(
(2α)

2 − 4
)

(2yd)
2 ≡ 0 [9]

donc en utilisant (∗∗)

d2
(

(4αm+ 2)
2 −

(
(2α)

2 − 4
)(

(2m)
2 − 4

))
≡ 6d2 [9] ≡ 0 [9]

Donc 2d2 ≡ 0 [3] donc d2 ≡ 0 [3] donc d ≡ 0 [3] et 3 divise d.
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(d) On a 4xd = 4r ≡ 0 [3] donc r est multiple de 3 et d également donc x =

(r
3

)
(
d

3

) de même on a 2yd = 2s ≡ 0 [3]

donc s est multiple de 3 et on a y =

(s
3

)
(
d

3

) donc
d

3
est un dénominateur commun de x et y ce qui est

contradictoire avec la définition de d qui est la plus petit dénominateur commun.

27. D’après la conclusion de la partie V si de telles matrices U et V existaient alors on aurait une relation de la
forme (

αm+
1

2

)2
−
(
α2 − 1

) (
m2 − 1

)
= u2 −

(
α2 − 1

)
v2

avec u, v ∈ Q et ça c’est impossible d’après la question 26 si 2α ≡ 0 [9] et 2m ≡ 0 [9] .

28. Si A3 + B3 = C3 avec A,B,C ∈ SL2 (Z) alors Tr
(
A3
)
≡ 0 [9] et Tr

(
B3
)
≡ 0 [9]. Donc si on pose U = A3 et

V = B3 on a bien U, V ∈ SL2 (Z)

Tr (U) ≡ 0 [9] et Tr (V ) ≡ 0 [9] et det (U + V ) = det
(
C3
)

= 1

D’après la question 27 ces matrices U et V ne peuvent exister donc il n’existe pas de solution dans SL2 (Z)
de l’équation X3 + Y 3 = Z3.

De plus, si n est multiple de 3, on note n = 3k et l’équation Xn + Y n = Zn s’écrit(
X

n
3

)3
+
(
Y
n
3

)3
=
(
Z
n
3

)3
avec X

n
3 , Y

n
3 , Z

n
3 ∈ SL2 (Z) qui n’a pas de solutions.

PARTIE VII
29. Si M ∈ Mp (C) est k périodique alors le polynôme Xk − 1 est un polynôme annulateur de M. Or, Xk − 1 =∏k−1

r=0

(
X − e 2irπk

)
est scindé à racines simples. Donc M est diagonalisable.

30.

(a) Notons X =

(
a b
c −1− a

)
on a −a (1 + a)− bc = 1 donc a2 + bc = −a− 1

et X2 =

(
a2 + bc −b
−c bc+ (1 + a)

2

)
= A =

(
0 −1
1 −1

)
Donc on a b = 1 et c = −1 donc a2 − 1 = 0 et −1 + (1 + a)

2
= −1

donc (1 + a)
2

= 0 donc a = −1. Donc X =

(
−1 1
−1 0

)
= B

A2 = −A− I2 donc A3 = −A2 −A = I2
Donc X6 = I2 et donc X est 6− périodique donc 12− périodique...

(b) A2 =

(
0 −1
1 −1

)2
=

(
−1 1
−1 0

)
= B et Y = A est 3− périodique

(c) Soit Z =

(
0 1
−1 0

)
on a Z2 = −I2 = C et donc Z est 4− périodique donc 12 périodique

et comme A+B = C on peut écrire X2 + Y 2 = Z2 avec X,Y et Z toutes 12− périodiques.

31. On a n = 2 + 12k avec k ∈ Z et donc Pour toute matrice M : 12− périodiques on a

Mn = M2+12k = M2
(
M12

)k
= M2 (I2)

k
= M2

Donc comme les matrices de la question précédente sont 12− périodiques et vérifient X2+Y 2 = Z2 elles vérifient
également Xn + Y n = Zn.

32. Les matrices X,Y et Z sont inversible et leur inverse est dans SL2 (Z) , de plus elles vérifient X2 + Y 2 = Z2

donc le triplet de matrice X−1, Y −1, Z−1 est solution de X−2 + Y −2 = Z−2

Si n ≡ −2 [12] pour toute matrice M : 12− périodique on a M−2 = Mn

Finalement, on a bien
(
X−1

)n
+
(
Y −1

)n
=
(
Z−1

)n
.
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33. A et B sont 3− périodique et C est 2− périodique donc elle sont toutes 6− périodiques et donc

∀k ∈ Z, A1+6k +B1+6k = A+B = C = C1+6k

De plus A−1 +B−1 = B +A = C = C−1 et donc

∀k ∈ Z, A−1+6k +B−1+6k = C−1+6k

Finalement, si n ≡ ±1 [6] le triplet (A,B,C) est solution de Xn + Y n = Zn.

34. Si n ≡ 0 [6] ou n ≡ 3 [6] alors n est multiple de 3 et l’équation Xn + Y n = Zn n’admet pas de solution d’après
la partie VI.

Si n ≡ 1 [6] ou n ≡ 5 [6] alors il y a des solutions (question précédentes)

Si n ≡ 2 [6] on a n = 2 + 6k alors soit k est pair et n ≡ 2 [12] et il y a des solutions, soit k est impair et
n = 2 + 6 (2p+ 1) = 8 + 12p = 4 (2 + 3p) donc n est multiple de 4 et on a pas de solutions.

Si n ≡ 4 [6] on a n = 4 + 6k alors soit k est pair et n est multiple de 4 donc pas de solutions, soit k est impair
et n = 4 + 6 (2q + 1) = 10 + 12q donc n ≡ −2 [12] et il y a des solutions.

PARTIE VIII : Réseaux de Qn.

35. R = 〈v1, ..., vm〉 donc c’est un sous-groupe de (Qn,+) .

36. Si n = 1,R =Zv1 + ...+Zvm avec v1, ..., vm ∈ Q soit d le ppcm des dénominateurs de v1, v2, ..., vm alors il existe
des entiers a1, ..., am tels que ∀i, vi =

ai
d
.

Les éléments de R sont de la forme
m∑
i=1

kiai
d

=

∑m
i=1 kiai
d

avec ki ∈ Z.
{
∑m
i=1 kiai} est le sous-groupe de (Z,+) engendré par les entiers ai et donc c’est pZ avec p = p gcd (a1, a2, ..., am) .

Finalement, R = rZ avec r =
p

d
.

r n’est pas unique car −r marche aussi.

37. Comme π est un morphisme de groupe de (Qn,+) dans (Q,+) on a

∀x ∈ π (R) , x = π

(
m∑
i=1

kivi

)
=

m∑
i=1

kiπ (vi)

donc on est ramené à la situation de la question précédente. Donc il existe s ∈ Q tel que π (R) = sZ.

Du coup s ∈ π (R) donc ∃ω ∈ R, π (ω) = s et on a bien π (R) = π (ω)Z.

38.

(a) π (x) ∈ π (ω)Z donc ∃q ∈ Z,π (x) = qπ (ω) = π (qω) et donc si on pose x̃ = x − qω alors x̃ ∈ R et on
a π (x̃) = π (x) − π (qω) = 0. Donc x̃ ∈ Qn−1 × {0}. Finalement, on a bien x = qω + x̃ avec q ∈ Z et
x̃ ∈ Qn−1 × {0} ∩ R.

(b) Si x = qω + x̃ = pω + ỹ avec p∈ Z et ỹ ∈ Qn−1 × {0} ∩ R. Alors x̃ − ỹ = (p− q)ω et π (x̃) = π (ỹ)
donc π (x̃− ỹ) = 0 et donc (p− q)π (ω) = 0 donc soit p = q et alors x̃ = ỹ soit π (w) = 0 et donc
π (R) = π (ω)Z = {0} et donc ω = (0, 0, ..., 0) et donc x̃ = ỹ.
Donc x̃ est unique. Par contre si on remplace ω par −ω alors −q est un entier qui donne la relation donc
l’entier q n’est pas unique.

39. En utilisant la question 38 appliqué à v1..., vm on peut écrire

∀x ∈ R, x =

m∑
i=1

kivi =

m∑
i=1

kiṽi +

m∑
i=1

kiqiω

et comme
∑m
i=1 kiṽi ∈ Qn−1 × {0} ∩ R l’unicité vu ci-dessus nous dit que x̃ =

∑m
i=1 kiṽi

Si x ∈ Qn−1 × {0} ∩ R alors x = x+ 0ω donc x = x̃ =
∑m
i=1 kiṽi et donc on a bien

Qn−1 × {0} ∩ R =

{
m∑
i=1

kiṽi|k1, ..., km ∈ Z
}
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40. Si n = 1 alors on a vu qu’il existe r ∈ Q tel R = rZ donc u1 = r convient.

Supposons le théorème vrai pour la dimension n−1, et soitR ⊂ Qn on a queQn−1×{0}∩R = {
∑m
i=1 kiṽi|k1, ..., km ∈ Z}

est de dimension n− 1 donc il existe u1, ..., up ∈ Qn−1 × {0} ∩ R tels que Qn−1 × {0} ∩ R = Zu1 ⊕ ...⊕ Zup
Et donc R = Zu1 ⊕ ...⊕ Zup ⊕ Zω ce qui conclut la récurrence.

41. Si (u1, ..., up) est une Z base deR alors ∀i, vi ∈ vect (u1, ..., up) donc la famille u1, ..., up est une famille génératrice
de Qn (car la famille (v1, ..., vm) est génératrice). Donc p ≥ n.
Supposons qu’il existe q1, ..., qp ∈ Q tels que

∑p
i=1 qiui = 0Qn En multipliant par le dénominateur commun des

fraction qi on obtient
∑p
i=1 kiui = 0Qn avec ki ∈ Z mais alors ∀i, ki = 0 car (u1, ..., up) est une Z base et donc

∀i, qi = 0 et donc la famille (u1, ..., up) est libre.

Finalement, la famille (u1, ..., up) est une base de Qn et donc n = p.

PARTIE I
42.

(a) Ip ∈ G car c’est l’élément neutre de SLp (Q) et donc ∀i, ei ∈M ⊂ H.
(b) ∀y ∈ M on a y = Nei ou y = −Nei avec N ∈ G donc ∀M ∈ G,My = (MN) ei ou My = − (MN) ei donc

My ∈M. Donc si h =
∑q
i=1 yi on a Mh =

∑q
i=1Myi ∈ H.

(c) On a Mej =
∑p
i=1 αiei avec αi =

ai
bi
∈ Q et tels que ∀i, αid = ki ∈ Z et donc

ai
bi

=
ai
bi
× d× 1

d
=
ki
d

Si on fait la division euclidienne de ki par d, on obtient ki = qid+ ri avec 0 ≤ ri < d et donc

Mej =

p∑
i=1

ki
d
ei =

p∑
i=1

(
qi +

ri
d

)
ei =

p∑
i=1

qiei +
1

d

p∑
i=1

riei

(d) La famille
(
e1, ..., ep,

e1
d
, ...,

ep
d

)
est Z génératrice de Mej pour tout M dans G et pour tout j et donc une

somme et différence d’éléments de ce type est toujours dans le sous-groupe engendré par
(
e1, ..., ep,

e1
d
, ...,

ep
d

)
et cette famille est génératrice car (e1, ..., ep) est une base de Qp.

(e) D’après la question 40 il existe (u1, ..., up) une Z base de H et comme d’après le b) Mui ∈ H il existe des
entiers ki tels que Mui =

∑p
i=1 kiui.

(f) Soit F la matrice de passage de la base (e1, ...ep) à la base (u1, ..., up) alors ∀M ∈ G, les coeffi cients de Mui
dans la base (u1, ..., up) sont des entiers donc F−1MF ∈ SLp (Z) .

43.

(a) On A2− tr (A)A+ I2 = 02 (Cayley-Hamilton) donc A (A− tr (A) I2) = −I2 donc A−1 = tr (A) I2−A ∈ K
car tr (A) ∈ Z. De même pour B−1.

(b) (ABAB) = (AB)
2

= tr (AB)AB − I2 ∈ K
A2 = tr (A)A − I2 ∈ K de même pour B2 et BA (car tr (AB) = tr (BA))et on montre facilement par
récurrence que ∀n ∈ N,An ∈ K,Bn ∈ K, (AB)

n ∈ K et (BA)
n ∈ K.

Donc si on prend m ∈ K alors MA ∈ K et MB ∈ K et du coup tout produit de matrice A,B,A−1, B−1

est dans K.
Donc G ⊂ K.
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