4.2.2

Corrigé de la deuxiéme épreuve écrite

CORRIGE

Partie 1.A

1. Ona f,(0)=a,—>0 quand n —>+ 0.
Donc, par différence, b, sin(nx) - 0 quand n — + .

2a. (i) Silasuite (b,), netend pas vers 0 quand n tend vers + oo, il existe £ > 0 et une suite extraite
(b(p(n)) tels que : VnelN y |b(p(n)| > €.
Comme ¢(n) — + oo avec n, on peut en extraire une sous-suite, notée (np); telle que :

VeE>1, nk+123nk.

.. H ’ ’ . ’ T ’ 5l
(i) On recherche des intervalles [a'y, , b';] de laforme: a'y = eTPRT b'p="g + ppm,avecp, e et
. 1 , , . 2n
Sl szi [ak,bk]:[ak,bk].Onablen bk—akzi
np 3nk
: . . . 1
Il est clair que si l'on trouve de tels entiers p,eZ,onaura: Vxed, , |sin(nyx)| > 9

Choisissons p; =0 et supposons alors construits J; o Jg o ... D J}, . Construisons Jj,; .La longueur de
Npyl 27
3

lintervalle nj,;J; estégale a > 2 ,doncil existe oy, € R tel que:

o1 5 Cpy1 +27] © ngyy - Jp
Soit p'p,1 €Z l'entiertelque p'p 1 t<ap 1< (P'p+ .

Alors, si pp1=p'pe1+1l.0na: [ppgn, (ppey+ Dl clopyy, opyq + 271 .

i3 5n
Posons a'pyq = 6 TPrLT > b'py1= 6 TPR+LT-

Ona: [a’k+1 , b/k+1] Cngyy -Jk ,etdonc: Jk+1 = [a'k+1 y b/k+1] CJk.

Nhyl

Remarque : Pour la construction d'une suite d'entiers (pj); , on peut aussi procéder de la fagon suivante.
Supposons construits pq, ... , pp dans Z avec p; = 0 satisfaisant les conditions demandées ; on doit chercher
Pry1 €Z tel que:

. % % < : % % < : 7[ % < : ” %
7 + pp.T S +p . S é +p .U < é +pp.T f
ng k nk+1 k+1 nk+1 6 k+1 ny, 6 k

ce qui équivaut a :

k41 1 k+1 5
arR=Pet H o, —1§E0k+sgépk+1ﬁpk+ ny _IQEOHGE:M"

k+1 4 . .
Comme B, — ajp, = n+ —1@ > - > 1,untelentier p,, eZ existe.
k

[}
O [~

2n
(iti) La suite (J3), est une suite d'intervalles non vides fermés emboités de longueur < PYS donc tendant
np
vers 0 : il en résulte que NJp ={xp},x9eR.
k>1

1
Comme , V&, |sin(ny xg) | > 9 il en résulte que (b"k sin(ny xy))} ne peut tendre vers 0 puisque

£

2>0.

|bnksin(nk xg)| =
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2r

2n
2 (2nx) 2
2. () Ona I[bsin(ne)iPdx=b, [ B - % dx = nb, .
0 0

(i) Si la suite (b,,) est bornée, d'aprés le théoréme de convergence dominée, on déduit que
2
I [bnsin(nx)]2 dx — 0 quand n — + oo et donc, d'apres (i), (b,) >0 quand n — + 0.
0

(iii) Si b, =Inf(1, |b,|),ona: |b',sin(nx)| < |b, sin nx| etdonc (b, sin(nx)) tend vers 0 quand n tend
vers + oo , pour tout x € IR . Le raisonnement de (ii) implique que (b';,) tend vers 0 et donc, pour n>N,
b',=b,, ie (b, tendversOquand n — +oo.

Partie 1.B

o

142 1 a 142 1
la. Comme | - | <5 Ea +7E , 0n a aussi | - en(x)| <3 Eﬂ +*2§ = v, , terme général d'une
n 2 nop n 2 nn

o - - n
série numérique convergente : la série % e, (x) % o converge absolument.
n n=>

1b. D'apres (1a), la série % e,(x) é o converge normalement sur [0, =] et, pour tout entier n e IN*,
nz

x— e,(x) =sin nx : [0, 7] > R est continue. Donc, sa somme 6(a) est continue sur [0, x].

1lc. 6 est évidemment linéaire.
0 est injective : puisque la série converge normalement sur [0, x] , elle converge uniformément sur
[0, =], on a donc :

T © o, T oy, T oo
. 7? . . _ . 9. T
Vk>1 , IO sin kx . 0(a)(x) dx = " J' sin kx . sin nx dx = % J;) (sin kx) 2 dx = 2 %

n=1 0
d'ou l'injectivité.
Par ailleurs, H est complet pour cette norme car 02 est complet et 6 est injective et linéaire.

2. Soit feE.
f(x), xel0,n]

fl—x) , xel-n,0] et J? prolongée a R tout entier par 2z périodicité, ce qui est possible

Posons f(x) =

car f(—m) =—f(m)= 0 = f(x) = f(n) .

f est continue, C1 par morceaux sur IR, impaire et 2z—périodique. Elle est donc égale a la somme de sa série
de Fourier (théoréme de Dirichlet) en chaque point xe R, i.e.:

~ X x©
f(x) =§ ancosnx+z b, sin nx .

Mais f étant impaire :

n
I f(x) sinnxdx =
-7

I
EREN

oy

an:an(f )=0 et bn=bn(f )= f(x) sin nx dx .

D'autre part, f étant ¢! par morceaux, par intégration par parties, on obtient :

|
ha
Y
D
<8
K

b 17 - ) d l§~ cosnx %" 1
n= !nf(x) sinnxdx = f(x) 771 . +7r
3

1 T = 2
i.e. = — ! = — ¢ = — >
ie b, o L,f (x) cos nx dx ™ J;) f'(x) cos nx dx , n>1

L=, "(x) ,xel0,x]
ou f '(x) :g’(—x) ,xel[—m,0]

o7




et comme f "(= f ') est continue par morceaux sur [— 7, n], la suite de ses coefficients de Fourier est dans

02 et donc (o) € 02 (inégalité de Parseval). D'ou Ec H .
2 T
3.  Soit (f,g) — - I f'g dt:E xE — R : cette application est bilinéaire, symétrique et définie positive
0

2 T
puisque, si - I |f ’|2 dt =0, cela implique, f ' étant continue par morceaux sur [0, z], que f'(¢) =0

sauf, peut-étre, en un nombre fini de points de [0, =] et donc, f étant continue sur [0, =] est constante, et
f(0)=0 donc f=0 sur [0, x].

De plus, en reprenant les calculs précédents, d'aprés I'égalité de Parseval appliquée a la fonction paire £’
ona:

1 i . 1
o J 1 ax= +z lan (F |2

27
- n=1

z - Z 1 H Z 1 H T 1 7 7
car ay(f’) =0 puisque ay(f )= _[f dt:ﬁ I fldx =~ [f(x) —f(=n)1=0
- -

2
T
et bn(J7 ") =0 puisque f " est paire.
T

o =0 1 7=, d d"i 724 17 24 1&g 2
r an(f):njfcosnx x = oy ,dou 2nI\f| x:”{) Fad x:2n§1a

- 3

T

. & 2 2 4 ’ 2
ie. 3 ooy = [ 1 1Pde= 1Ay -
n=

o

N o
Il en résulte immédiatement que E est dense dans H en prenant fN:Z - e, — f dans H, et en
n

remarquant que fy appartienta E , pour tout entier N.

4a. Pourtout xe[0,n]:

o 1 2 H1/2 2
[f@)] = 2 | sinne] | < E:Z ZE E %E = £l < klfllg avec k=\/g :
n=

Remarque : On peut aussi établir I'inégalité (*) en se limitant aux fonctions f e E qui, d'aprés la question
précédente, est dense dans H.

X
Etsi feE,ona:Vxel0, ], f(x)= I f'(t) dt, en utilisant I'inégalité de Cauchy-Schwarz :
0

1/2
G

[\

x 1/2 x
Vael0,nl , |flx)| < EI |f’<t>|2dta aj 1
0 0

D'ou Iflo <V IflE-

4b. Ona hyeE ,etpourtout feE: |(flhy)| < IIfllg llhgllg (dapres 3.).

or (f|h)_§jodx In{,adxgzi f(a)%+

a
2 2
et HhaHH = E

D'ou, pour tout feE etpourtout ael0,x[ : |fla)] < ?/i Vaz-a) || flg < \7; Ifllgz  puisque
2

-2 A

a(r—a)

1 d H 2 E% 0 2 T 2
X x = = . = .
a? * I (m— a)2 m atr-an T 1 alr-a) a(r—a)
a

o e

o8




Va(r—a) Sg .

Par suite, () [flloo < —

2v2

IIAllg pour tout feE, etdonc aussi pour tout f e H puisque E est dense dans

H.

o ) 22 o
En particulier, si f = h, dans (x) , on obtient | f|l,=1et [|hyolg= % , d'ou I'égalité dans (x).
T

2V 2

réalise la meilleure constante pour (x) de 4a. .

Ainsi,

5. Il est immédiat de vérifier (F(0) = 0) que, puisque f,€E, Fo f, =g, €E etque, sauf pour un nombre
fini de points au plus,ona: g ,(x) =F '(f,(x)) . f ', () .

(a) Puisque (f,) converge vers f dans H et que | f,llo < | fnllz » on obtient que (|| f,]l,) estbornée

_r
2V2
puisque (|| f,|lz) est bornée. Soit || f,llo < A .

(b) Ensuite, en écrivant que, compte-tenu de 3., (|| fllg= -\/% |\f’\|L2(0 © pour fekE):

/2
lgp—8gllr = IF e fo=Fofolr = N2 1F e f) —Fefll o -
Or  [(Fofp) ~(Fofl 2= IF ofp) £y~ F ofp) . foll 2

< NIF o f) =F o fl f ol a4 NF o £) 1 o= F gl 2
< NF o fy=F o folloo 1F pll 2+ Milf ' —F gl 2
< My llfp—Folla Il 2+ Millf = gl 2

(en utilisant la formule des accroissements finis)

2 My lify—Folm folly+ Milfp =l

d'our : lgp— g4l < =
D ql|H 2V2

3
(c) lgp — &gl < El\/’z 272 ||prH+M1E Ifp—Folly < ctellfp—Sfqly,

puisque (”fPHH) est bornée. Et donc la suite (gp)p est de Cauchy dans l'espace complet H donc converge

dans H vers g. Et d'aprés I'inégalité (x) (g,) converge aussi vers g dans L*®([0, =]). Or gp=Fof, et (fy)
de Cauchy dans H est aussi de Cauchy dans L*[0, =] par (%), donc converge vers f dans L*([0,x]) (et en
fait f e H car (f,), converge vers f dans H). Par suite, g, — Fo f dans L*® . llenrésulteque g=FofeH.

(d) Si  f,geH,alors f+getf—geH etdonc, avec F(x) :=x2, (f+g)2et (f—g)2ecH

d'ot f.g:i [(f+8)2— (f—g)%] e H et H est une algebre.
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Partie 11

1. En appliquant la formule de Taylor en x , on obtient :

h h?
Flxo+h)=f(xo)+ 1, f'(wo) + 5 f"(x0) + h2e(xg, h)
h. B2 avec lim e(xg,h)=0.
Flog=h) =f(xq) = 1, F'(x0) + 7 f"(xo) + h¥eCxg,—h) h=0
Il en résulte que :
Flxg+h) + flxg—h) —2f(xg)
’ hZO © = ) + Lelag, )+ eg(xg, — )] —  f"(xg) .
h—0

2a. f étant continue, ¢ est aussi continue et vérifie ¢(a) = ¢(b) =0 .
Par ailleurs, la dérivée au sens de Schwarz étant linéaire, (") existe et est égale a :
o (x) = fF(x) +2e=2e>0.

Si ¢ admet un extremum positif strictement sur [a , b], il est atteint par un point xy € la , b[ puisque ¢ est
continue sur [a, b]. Par ailleurs, pour A > 0 assez petit, on aurait :

o(xg+h) < o(xg) , olxg—h)<e(xg)
et donc, pour h >0 assez petit :

o(xg+h)+ o(xg—h) —20(xp)

2 =
et donc aussi ¢(")(xg) <0, ce qui est absurde.

2b. Il résulte de 2a. que, pour tout x e [a, b], ¢(x) <0, ie.:
b)—
f(x) — fla) — f(®)=fla) ;_ﬁ(a) (x—a) <elx—a)(b—x) , Ve>0
b)—
le. f(x)— fla)— % (x—a) €0 , Vxela,b] (faire tendre € vers0) .
R . . J(b)—f(a)
De méme, en considérant la fonction ¢(x) = f(x) — f(a) — T b—a (x—a) +elx—a)b—-x)surla,bl],
ona: y("(x) =—2e <0 etne peut admettre de minimum strictement négatif sur [a, b] et donc,

Vxela,bl, w(x) >0, ie.:

b) —
f(x) = fla) — il ;_i(*a) (x—a) > ela—x)(b—x) , Ve>0
b) —
ie. f(x)—f(a)—%ﬁ(a) (x—a) =20 , Vxela,bl.

f(b) —f(a)

Finalement,ona: Vxela, bl , f(x) =f(a) + b—a

(x—a) et festaffine.

3a. Puisque la série [a, cos nx + b, sin nx] converge simplement sur IR, il résulte du 1. que les suites (a,,)
et (b,,) tendent vers 0 et donc sont bornées par M > 0.

1
Par suite, la série %(an cosnx+ b, sin nx)@ converge normalement sur R car :
n>1
1 . 2M
VxeR, ? (a, cosnx + b, sinnx) | < 72

1
Chagque fonction x —— —5 (a,, cos nx + b, sin nx) étant continue sur R, la somme
n

o 1
F(x) = — +Z ﬁ (a, cos nx + by, sin nx) est continue sur IR.
n=1
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n
3b. Notons Sp(x) =0 et S,(x) = ) (aycoskx+ bysinkx) .Ona:
k=1

F(x+h)+F(x—h)-2F(x)

Alx, ) =

hZ
o0 1
:JE - Thz [a, cos (nx + nh) + b, sin (nx + nh)+ a, cos(nx — nh) + b, sin(nx — nh)
n=1 1
- 2a,, cos nx — 2b,, sin nx|
i.e.
o 1
Alx,h) = — JE Thz [2a,, cos nx (cos nh — 1) + 2b,, sin nx . (cos nh —1)]
n=1 N
o 1
Alx,h) = — JE (a, cos nx+ by, sin nx) .2(cos nh —1) 27}12
n=1 n

2 h_1 4 2E&EL B
et w2 p2 (cosnh—1) =—4 sin 9 a2p2 = u(nh).

2c. On peut écrire (transformation d'Abel) :

0 0
Alx , h) = +Z (a, cos nx + b, sin nx) u(nh) = +Z (Sp(x) — Sp_1(x)) u(nh)

n=1 n=1

=% S,(x) ulnh) - +Z Sp(x) ul(n + Dh) = +Z Sp(2) [u(nh) — ul(n + DA)]
n=1 n=0 n=0

chacune des séries [S,,(x) u(nh)] et [S,,(x) u((n+ 1)h)] étant convergente (en 1/n?).
Par ailleurs, la série [u(nh) — u(n + 1)h)] converge et a pour somme :

f [u(nh) —u((n + Dh)] = u(0) =1 (u(nh) >0 lorsque n — + o)

n=0

etdonc Ax,h) —fx) = > [8,(x) = F0)] [ulnh) — ul(n+ D] .

n=

2d. (1) Par hypotheése, on sait que S,,(x) tend vers f(x) quand n tend vers + oo .
Par suite, pour &> 0 donng, il existe N=N(e,x) e N tel que n>IN = |S,(x) — f(x)| <e.
Par ailleurs, pour chaque n € IN fixé, [u(nh) — u((n + 1)h)] tend vers u(0) — u(0) =0 quand A tend vers 0

puisque u est continue en 0 (z(0) = 1).
(n+1D)h
Et, d'autre part, en écrivant que u(nh) — u((n + 1)h) = I u'(¢) dt eten remarquant que

nh
, ﬁél-zt 1ot z@
u'(t) = 2 tsm %E+zsm2.cosz
16

etdonc, pour t>1, |u'(#)| < 72 , on obtient que :

20 +0oo +00
; lu(nh) —u((n+ DR < [ |w'@®|dt <M= [ [u@®)]dt<+00
n=N+1 Nh 0

car u est C! au voisinage de 0 (méme analytique).
Finalement, on a :

N
A, ) = f()| < ) |8, [ulnh) —ul(n + DR)1| + Me
n=0

61




et si A tend vers 0, la somme \i\su(n = 0,N, ) tend aussi vers 0 et donc pour |k| < hg(e) ,ona:
|AGx, h) = f(x)]| < e(M +1)

ce qui prouve que limA(x,h) existe et vaut f(x).
h—0,h=0

Remarque : En fait, la preuve précédente est une variante du théoreme d'Abel classique, dont voici une
variante de la preuve a l'aide du théoreme de convergence dominée.
2
Pour (A ,#) e R_ , posons :
N %; si h=0
g, t)= n(x) = f(x) avecn=E(t/h) pour h=0

ou E(y) désigne la partie entiére de y .

On a alors :
(n+1)h
Sy(x) - f)[unh) —u((n+ D)1= [ gh,t)w'(e) ds.
nh

Comme la suite (S, (x) — f(x)), converge vers 0, elle est bornée. 1l existe donc M € R, tel que:

2
V(h,)eR, , |gh, )| <M.

+ o
De plus, compte-tenu de I'expression de u'(¢) , l'intégrale I |u'(¢)| dt est convergente.
0

Enfin, I'application A +—— g(h , t) est continue en 0, puisque la suite (S, (x) — f(x)) tend vers 0 lorsque n
tend vers + oo .

Ainsi, on déduit par le théoréme de convergence dominée que :
+ 00

hr—> J' g(h, ) u'(t) dt=A(x, k) — f(x) estcontinue en 0,
0
le.: lim [A(x,h)—f(x)]=0.

h—0

X
(i1) Considérons maintenant G(x) : = _[ (x—1¢) f(t)dt ,pour xeR.
0

G a un sens car f est, par hypothése, continue sur R. De plus, G est dérivable et on a :

X
VieR , G'(x) = [ f(o)de.
0
G’ estdonc Clet G"(x) = f(x) pourtout xeR.

(zi1) Ainsi, la fonction x —— (F — G)(x) est continue et admet une dérivée au sens de Schwarz nulle et, de

11.2.b , est une fonction affine sur R : il existe o, e R tels que:
X
VieR , Fx)=ax+B+ [ (x-9) ft)dt.
0

F est donc de classe CZsur Ret F” = f.

2e. La série définissant F' étant uniformément (normalement) convergente sur R, il en résulte que :

T 1
- = I F(x) cosnxdx = 45 ay n>1
T n
-
T 1
- — ; = "5 > 1.
et . _[ F(x) sin nx dx 2 b, n>1

-7

F étant de classe C2, en intégrant par parties, il vient :
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T 101 T 4 sinnx
I F(x) cosnxdx = — — H— sinnx.F(x) - I F'(x) —dx
) T gn _r ) . n

1 a
= — I F'(x) sin nxdx
n J

et, puisque F'(—n)=F '(n) :
1 7 1 1 7
— F’ 1 dx= "5 F" dx = —5 d
o __[ (x) sin nx dx 2 I,, (x) cos nx dx 2 Jn S(x) cos nxdx
17
ie. an=; I flx)cosnxdx , n>1.
-7

1 n
De méme, b, = ; I f(x)sinnxdx , n>1.
-
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Partie 111
1. Soit f le prolongement impair et 2z—périodique de fa R.

Comme f(0) =f(x) =0, f est continue sur RR.
Soit x € [0, + oof . Il existeunentierk >0 telque kr<x< (k+ Dx.
Posons y=x — kx e [0, x].0na sin(nx) = (=1)"* sin(ny).

0
o Si k=2p est pair, alors sin(nx) = sin(ny) et donc la série 2 b, sin(nx) converge et
0 ~
+Z b, sin(nx) = f(y) = f(x — 2pr) = f(x) .
n=1
# Si k=2p+1 estimpair, alors sin(nx) = (-1)" sin(ny) = — sin n(x —y) et donc la série
o0 o0
? b, sin(nx) converge et +Z b,sin(nx) = —f(n—y) , n—yel0,n]
n=1

= —f(2p+Dn—x) = — f—x) = f(x) .

[e.e] ~ ~
De méme pour x e ]—o00,0], la série? b, sin(nx) converge etvaut — f(—x) = f(x) , d'ou le résultat.

~ 1 F - ~
Les coefficients de Fourier de f sont - I f(x) cos(nx) dx =0 puisque f estimpaire et

~T

1 F - 2 T
- I f(x) sin(nx) dx = ;I f(x) sin(nx) dx pour neIN .
T 0
1 F -
Et d'aprés le §ll, il résulte que - I f(x) sin(nx) de=0b, ,
-7
2 T
ie.: VnelN* | ;j f(x) sin(nx) dx = b,
0
2. Ona:

T T
[ [A-vu'+ )%+ (1-Bu+ )2lde— [ fIl-Du+ tv] dx
0 0

DN | =

J((1-tHu+ tv) =

{1-02u2+ 202+ 2t(1-tu'v'+ (1-)2u2+ 2 v+ 2t(1-thuv } dx

Il
[\
oy

-(1-9 f fudac—tfZ fodx.
0 0

De méme :
T

1-¢t * ¢ T ™
A-nJw+td) =" [ @2+uPde—(1-t) [ fude+ , [ @2 0Dde—t [ fodx
2 2
0 0 0 0
et donc :

1 z 1 m
J(A-tu+ )~ A= Jw) —tJw) =, Q-0 [ (A-H-Duw'2+ ¢t -1 v'2
2 0 2 0
1 r 2 L7 2
g -0 jo (A-n-Du+ tJ; t-1 v

+
I

2 V3
+ - t(1-9 I (u'v' + uv)
2 0

64




t(l—¢) T~
= — TI W2+ v 2y 2+ 2w 2w
0
t(l—¢t) *
= — TI [(u’—v’)2+ (u— v)2] dx .
0

, u=uq et v=ug,ilvient:

N |

3. Si uy et ug sont solutions du probléme (P) alors en prenant ¢ =
1 1 4 ’ ’ 2 2 1
JHy (ur+ug)H + g_[ [y —w'2)?+ (w1~ up)®] da = 5 (J(wy) + J(up))
0

1 Ui+ ug
2J 5(u1+u2) =dJ 9

1 3
car  (u1+ up) € Eq etdonc [ [wy—w9)?+ (u— up)? dx = 0.
0

N |

<

n

Et, comme uj et ug sont continues sur [0, 7], _|' (w1 — ug) 2dx=0 = Uy =ug.
0

4a. Pour u,veEj,onpeutécrire: J((1—2t)u+ tv) =J(u+ t(v—u)) et,enposant w=v —u, il vient de la
question 2 :
¢(1 —t)

Ju+ tw) = J(u) + tJ(w+ u) —tJd(u) —

J(u) + t %J(u+ w)—J(u) -

Jw) + ¢t

V3
I 24 w2) dx
0

T

f (w’ +w2)dxg I w2+ w?) dx
0 0

N | =

gese

_[ [+ w) 2+ (u+ w)?-u?—u?—w'? —wz]—J' wa+ I(w'2+ w?) dx
0 0

b3 b1 t2 T
Jw + t8 [ Ww+ruw)- [ fw EI (w'?+ w? dx. cqfd
0 0 0

4b. Ona: uekE, estsolution de (P) si et seulement si, pour tout w e Eq, et pour tout e R :
Jw) < J(u+ tw) = J(w) + -

i T 2
ie. VteRVweEy} o< téj (v'w'+ uw) — I fwg + EJ' w'?+ uw?) dx
0 0 0

T
ce qui implique pour ¢t>0,VwekE,, 0 < I [(v' w'+ ww) — fwl dx +

T
I w24+ w?) dx, etenfaisant
0 0

N |~

T
tendretvers0: 0 < I [ w + uw— fwldx , VweE.

s s

En changeant w en — w, cela implique que Ywe Ey: [ (w'w'+ uw) = [ fw (P).
0

Réciproquement, si cette condition est réalisée, il résulte du calcul précédent que :

2 r
J(u+ tw) =J(u) + EJ— w2+ w?) dx > Jw) , YVt eRVweE
0

5a. Soit u € Eq une solution de (P).

En prenant v = sin nx , qui appartient & E(, dans (P’), il vient, pour tout entier n >1:
n T T
n I u' cos nx dx + _f usinnxdx = I f(x) sin nx dx
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T

n
et, en intégrant par parties : I w cos nx dx = u cos nx | +n I u sin nx dx

0 0 0
T b2
" P 2 . 4
d'ou la relation : (n®+ 1) [ ux) sin(nx) dx = 5 bn
0
r F b,
ie. Up= = u(x) sin(nx) dx =
n= g J;) (x) ) 241
~ R by .
5b. u(x) aunsenspourtout x € R car la série Z 271 sin nx est normalement convergente puisque
n®+
(b,,),, est une suite de coefficients de Fourier, donc est bornée.
% b
Par ailleurs, la fonction w(x) définie par w(x) = Z 72( 2n+ b sin(nx) est de classe C2 (on peut dériver
n-(n
deux fois terme a terme, les séries obtenues convergent normalement sur R) eton a:
& by : ~
VxeR , w'(x) = — Z 5, sinnx = —u(x)
n“+1
. . - & bn . fe e . 2
et donc, puisque d'apres le 8§11, la série v(x) : = Z —9 sin nx définit une fonction de classe C* sur IR telle
n
que :
v'(x) = f (%) .
Ona: VxeR , —u"(x) + u(x) = f (x)
Par ailleurs, on a bien z(0) = u(x) =0.
5¢c. llestclairque u=u | [0, nx] d'apres la question précédente, vérifie :

%u’# u=f
D) (0)=u(x)=0
5d. Montrons que u est solution de (P’) : d'aprés (D), pour toute fonction v € Ey, il vient:
T V.4 T
—I u”v+_[ uv:f Sfu
0 0 0

et, en intégrant par parties,

V3 T V3
- I u'vdx = —Hu'v — I u'v'dxH = I u'v'dx
0 0 0

T T
et donc, pour tout v e Eq, I u'v'+ uv = I fodx | ie :(P).
0 0

Et d'apres 4b. , u est solution de (P).
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