
4.2.2 Corrigé de la deuxième épreuve écrite

CORRIGE

Partie I.A

1. On a  fn(0) = an @ 0  quand  n @ + & .
Donc, par différence,  bn sin(nx) @ 0  quand  n @ + & .

2a. (i) Si la suite (bn)n  ne tend pas vers 0 quand n tend vers + & , il existe  ™ > 0  et une suite extraite
(bƒ(n))  tels que :  ◊n ‘ ˙  ,  …bƒ(n)… ≥ ™ .
Comme  ƒ(n) @ + &  avec n , on peut en extraire une sous-suite, notée  (nk)k  telle que :

◊k ≥ 1  ,  nk+1 ≥ 3nk .

(ii) On recherche des intervalles [a'k , b'k] de la forme :  a'k =  
π
6 + pk π  ,  b'k =  

5π
6    +  pk π , avec pk ‘ Á  et,

si  Jk =  
1
nk

    [a'k , b'k] = [ak , bk] . On a bien  bk - ak =  
2π
3nk

   .

Il est clair que si l'on trouve de tels entiers  pk ‘ Á , on aura :  ◊x ‘ Jk  ,  …sin(nk x)…  ≥  
1
2   .

Choisissons  p1 = 0  et supposons alors construits  J1 Ç J2 Ç … Ç Jk . Construisons  Jk+1 .La longueur de

l'intervalle  nk+1 Jk  est égale à   
nk+1
nk

   
2π
3     ≥  2π  , donc il existe  åk+1 ‘ È  tel que :

[åk+1  ,  åk+1 + 2π] «  nk+1 . Jk

Soit  p'k+1 ‘ Á  l'entier tel que  p'k+1 π ≤ åk+1 < (p'k+1 + 1)π .

Alors, si  pk+1 = p'k+1 + 1 , on a :  [pk+1 π , (pk+1 + 1)π] « [åk+1 , åk+1 + 2π] .

Posons  a'k+1 =  
π
6   + pk+1 π   ,   b'k+1 =  

5π
6    + pk+1 π .

On a :  [a'k+1 , b'k+1] « nk+1 . Jk , et donc :   Jk+1 =  
1

nk+1
    [a'k+1 , b'k+1] « Jk .

Remarque : Pour la construction d'une suite d'entiers (pkü)k , on peut aussi procéder de la façon suivante.
Supposons construits  p1 , … , pk  dans Z avec p1 = 0 satisfaisant les conditions demandées ; on doit chercher
pk+1 ‘ Á  tel que :

 
1
nk

   
 



 



�
π
6��+��pk�.�π�    ≤   

1
nk+1

   
 



 



�
π
6��+��pk+1�.�π�    ≤   

1
nk+1

   
 



 



�
5π
6 ��+��pk+1�.�π�    ≤   

1
nk

   
 



 



�
5π
6 ��+��pk�.�π�    ,

ce qui équivaut à :

åk = pk +  
 



 



�
nk+1
nk

��-�1�  
 



 



�pk�+��
1
6��   ≤  pk+1  ≤  pk +  

 



 



�
nk+1
nk

��-�1�  
 



 



�pk�+��
5
6��    = ∫k .

Comme ∫k - åk =  
 



 



�
nk+1
nk

��-�1�   
4
6    ≥    

4
3   >  1 , un tel entier  pk+1 ‘ Z  existe.

(iii) La suite (Jk)k est une suite d'intervalles non vides fermés emboîtés de longueur  ≤  
2π
3nk

   , donc tendant

vers 0 : il en résulte que  ı�Jk
k�≥�1

  = {x0} , x0 ‘ È .

Comme , ◊k, …sin(nk x0)… ≥  
1
2 , il en résulte que (bnk

 sin(nk x0))k  ne peut tendre vers 0 puisque

…bnk
�sin(nk x0)… ≥  

™
2   >  0 .
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2b. (i) On a ∫
�����0

2π
�     [bn sin(nx)]2 dx  =  b

2
n ∫

�����0

2π
�    

 



 



�
1
2��-���

cos(2nx)
2 ��    dx  =  π b

2
n  .

(ii) Si la suite (bn) est bornée, d'après le théorème de convergence dominée, on déduit que

  ∫
�����0

2π
�    [bn�sin(nx)]2 dx @ 0  quand  n @ + &  et donc, d'après (i), (bn) @ 0  quand  n @ + & .

(iii) Si  b'n = Inf(1 , …bn…) , on a :  …b'n sin(nx)… ≤  …bn sin nx…  et donc (b'n sin(nx)) tend vers 0 quand n tend
vers + & , pour tout  x ‘ È . Le raisonnement de (ii) implique que (b'n) tend vers 0 et donc,  pour  n�≥�N,
 b'n = bn,  i.e. (bn) tend vers 0 quand  n @ + & .

Partie I.B

1a. Comme  … 
ån
n   … ≤  

1
2  

 



 



�å
2
n�+��

1
n2�    , on a aussi … 

ån
n     en(x)… ≤  

1
2   

 



 



�å
2
n�+��

1
n2�    =  vn  , terme général d'une

série numérique convergente : la série  
 



 



�
ån
n ���en(x)�  

n≥1
 converge absolument.

1b. D'après (1a), la série  
 



 



�
ån
n ���en(x)�  

n≥1
 converge normalement sur [0 , π] et, pour tout entier n ‘ ˙* ,

x ò@ en(x) = sin nx : [0 , π] @ È  est continue. Donc, sa somme ∆(å) est continue sur [0 , π].

1c. ∆  est évidemment linéaire.
∆  est injective : puisque la série converge normalement sur [0 , π] , elle converge uniformément sur

[0 , π], on a donc :

◊k ≥ 1  , ∫
�����0

π
    sin kx . ∆(å)(x) dx  = ∑

n�=�1

+�&
�   

ån
n  ∫

�����0

π
     sin kx . sin nx dx =  

åk
k ∫

�����0

π
   (sin kx) 2 dx =  

π
2  

åk
k

d'où l'injectivité.
Par ailleurs, H est complet pour cette norme car ˘2 est complet et ∆ est injective et linéaire.

2. Soit  f ‘ E .

Posons  f
��õ

(x)  = 
 

 �����������f(x)�,��x�‘�[0�,�π]
-�f(-�x)��,��x�‘�[-�π�,�0]    et f

��õ
  prolongée à È tout entier par 2π périodicité, ce qui est possible

car  f
��õ

(- π)  = - f(π) =  0  =  f(π)  = f
��õ

(π)  .

f
��õ

  est continue, C1 par morceaux sur È, impaire et 2π-périodique. Elle est donc égale à la somme de sa série
de Fourier (théorème de Dirichlet) en chaque point  x ‘ È , i.e. :

f
��õ

(x)   =  ∑
0

&
�   an cos nx + ∑

1

&
�   bn sin nx .

Mais f
��õ

   étant impaire :

an = an( f
��õ

 ) = 0  et  bn = bn( f
��õ

 ) =  
1
π ∫

�����-�π

π
�   f

��õ
(x)  sin nx dx  =  

2
π ∫

�����0

π
�    f(x) sin nx dx .

D'autre part, f
��õ

   étant C1 par morceaux, par intégration par parties, on obtient :

  bn =  
1
π ∫

�����-�π

π
�   f

��õ
(x)  sin nx dx  =  

1
π  

 



 



-� f
��õ

(x)���
cos�nx

n ��� �
-�π

π
   +  

1
π ∫

�����-�π

π
�   f

��õ
 '(x)   

cos�nx
n     dx

i.e.   bn =  
1

πn ∫
�����-�π

π
�   f

��ã
 '(x) cos nx dx  =  

2
πn ∫

�����0

π
�    f '(x) cos nx dx  =  

ån
n      ,    n ≥ 1

où f
��ã

 '(x)  = 
 

 �f�'(x)������,��x�‘�[0�,�π]
f�'(-�x)��,��x�‘�[-�π�,�0]
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et comme f
��ã

 ' (= f
��õ

 ')  est continue par morceaux sur [- π , π], la suite de ses coefficients de Fourier est dans

˘2 et donc  (ån) ‘ ˘2  (inégalité de Parseval). D'où  E « H .

3. Soit  (f , g) ò@  
2
π ∫

�����0

π
    f ' g' dt : E | E @ È : cette application est bilinéaire, symétrique et définie positive

puisque, si   
2
π ∫

�����0

π
    …f '…2 dt = 0 , cela implique,  f ' étant continue par morceaux sur [0 , π], que  f�'(t) = 0

sauf, peut-être, en un nombre fini de points de [0 , π] et donc,  f étant continue sur [0 , π] est constante, et
f(0) = 0  donc  f = 0  sur [0 , π].

De plus, en reprenant les calculs précédents, d'après l'égalité de Parseval appliquée à la fonction paire f
��ã

 ' ,
on a :

  
1
2π ∫

�����-�π

π
    …f

��ã
 '…2 dx =  

1
2   ∑

n�=�1

+�&
�   …an (f

��ã
 ')…2

car a0(f
��ã

 ') = 0  puisque   a0(f
��ã

 ') =  
1
2π ∫

�����-�π

π
   f

��ã
 ' dt  =  

1
2π ∫

�����-�π

π
   f

��õ
 ' dx  =  

1
2π   [ f

��õ
(π)  - f

��õ
(- π) ] = 0

et bn(f
��ã

 ') = 0  puisque  f
��ã

 ' est paire.

Or an(f
��ã

 ') =  
1
π ∫

�����-�π

π
   f

��ã
 ' cos nx dx  =  ån  , d'où   

1
2π ∫

�����-�π

π
   …f

�����ã
 '…2 dx  =  

1
π ∫

�����0

π
�    …f '…2 dx  =  

1
2  ∑

n�=�1

&
    å

2
n

i.e. ∑
n�=�1

&
    å

2
n   =  

2
π ∫

�����0

π
�    …f '…2 dx = ÆfÆ2

H  .

Il en résulte immédiatement que E est dense dans H en prenant  fN = ∑
1

N
  

ån
n    en  @ f  dans H , et en

remarquant que  fN appartient à E , pour tout entier N.

4a. Pour tout  x ‘ [0 , π] :

…f(x)… =  ∑
n�=�1

+�&
�    … 

ån
n    …sin nx…… ≤  

 



 



� ∑
n�=�1

+�&
�����

1
n2�  

1/2
  

 



 



�∑
1

&
���å

2
n�  

1/2  
¶ ÆfÆ& ≤  kÆfÆH  avec  k = √ �

π2

6    .

Remarque : On peut aussi établir l'inégalité (*) en se limitant aux fonctions  f ‘ E  qui, d'après la question
précédente, est dense dans H.

Et si  f ‘ E , on a : ◊x ‘ [0 , π] , f(x) = ∫
�����0

x
�   f '(t) dt , en utilisant l'inégalité de Cauchy-Schwarz :

◊x ‘ [0 , π]  ,  …f(x)… ≤  
 



 

∫

�����0�

x
�   …f�'(t)…2 dt�  

1/2
  

 



 



∫
�����0

x�
   12 dt�  

1/2
 .

D'où ÆfÆ&  ≤  √ π   ÆfÆH .

4b. On a  ha ‘ E , et pour tout  f ‘ E :  …(f…ha)… ≤  ÆfÆH ÆhaÆH  (d'après 3.).

Or (f…ha) =  2π   
 




 




∫
�����0

a
�����

f�'
a ����dx�- ∫

�����a

π
 ����

f�'
π�-�a����dx��    =  2

π
    f(a)   


 
�

1
a��+���

1
π�-�a�    =  

2
a(π�-�a)    f(a)

et ÆhaÆ2
H   =  2π   

 




 




∫
�����0

a
�����

1
a2����dx�+ ∫

�����a

π
 ����

1
(π�-�a)2����dx��    =  

2
π   

 



 



�
1
a��+���

1
π�-�a�    =  2π   .  

π
a(π�-�a)   =  

2
a(π�-�a)  .

D'où, pour tout  f ‘ E  et pour tout  a ‘ ]0 , π[  :  …f(a)… ≤  1

√ 2
   √a(π�-�a)     ÆfÆH  ≤   π

2√ 2
   ÆfÆH    puisque
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√a(π�-�a)��≤��
π
2   .

Par suite,   (*) ÆfÆ&  ≤  
π

2√ 2
    ÆfÆH pour tout  f ‘ E , et donc aussi pour tout  f ‘ H  puisque E est dense dans

H .

En particulier, si  f = hπ/2 dans (*) , on obtient  ÆfÆ& = 1 et Æhπ/2ÆH =  2√ 2
π    , d'où l'égalité dans (*).

Ainsi,   π

2√ 2
    réalise la meilleure constante pour (*) de 4a. .

5. Il est immédiat de vérifier (F(0) = 0) que, puisque  fn ‘ E ,  F Ï fn = gn ‘ E  et que, sauf pour un nombre
fini de points au plus, on a :  g 'n(x) = F '(fn(x)) . f 'n(x) .

(a) Puisque (fn) converge vers f dans H et que  ÆfnÆ&  ≤  π

2√ 2
   ÆfnÆH  , on obtient que (ÆfnÆ&)  est bornée

puisque (ÆfnÆH) est bornée.  Soit ÆfnÆ& ≤  A .

(b) Ensuite, en écrivant que, compte-tenu de 3., (ÆfÆH =  √ �
2
π    Æf 'Æ

L2(0 , π)
  pour  f ‘ E) :

Ægp - gqÆH  =  ÆF Ï fp - F Ï fqÆH  =  √ �
2
π    Æ(F Ï fp)' - (F Ï fq)'Æ

L2[0 , π]
 .

Or Æ(F Ï fp)' - (F Ï fq)'Æ
L2  =  Æ(F ' Ï fp) . f 'p  - (F ' Ï fq) . f 'qÆ

L2

≤   Æ [(F ' Ï fp) - F ' Ï fq] . f 'pÆ
L2 + Æ(F ' Ï fq) . [f 'p - f 'q]Æ

L2

≤   ÆF ' Ï fp - F ' Ï fqÆ&  Æf 'pÆ
L2 +  M1Æf 'p - f 'qÆ

L2

≤   M2 Æfp - fqÆ&  Æf 'pÆ
L2 +  M1Æf 'p - f 'qÆ

L2

(en utilisant la formule des accroissements finis)

d'où : Ægp - gqÆH  ≤  
π

2�√ 2
    M2 Æfp - fqÆH ÆfpÆ

H
 +  M1Æfp - fqÆ

H 
.

(c) Ægp - gqÆH  ≤   
 



 



��M2���
π

2�√ 2
����ÆfpÆH��+��M1�   Æfp - fqÆ

H
  ≤  cte Æfp - fqÆ

H

puisque (ÆfpÆ
H

)  est bornée. Et donc la suite (gp)p est de Cauchy dans l'espace complet H donc converge

dans H vers g. Et d'après l'inégalité (*) (gp) converge aussi vers g dans L&([0 , π]). Or  gp = F Ï fp  et (fp)
de Cauchy dans H est aussi de Cauchy dans  L&[0 , π] par (*), donc converge vers f dans L&([0�,�π]) (et en
fait  f ‘ H  car (fp)p converge vers f dans H). Par suite,  gp @ F Ï f  dans L& . Il en résulte que  g�=�F Ï f ‘ H .

(d) Si  f , g ‘ H , alors  f + g et f - g ‘ H  et donc, avec  F(x) : = x2 , (f + g)2 et (f - g)2 ‘ H

d'où f . g =  14   [(f + g)2 - (f - g)2] ‘ H  et H est une algèbre.
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Partie II

1. En appliquant la formule de Taylor en  x0 , on obtient :

f(x0�+�h)�=�f(x0)�+��
h
1!��f�'(x0)�+��

h2

2 ���f�"(x0)�+��h2�™(x0�,�h)

f(x0�-�h)�=�f(x0)�-��
h
1!��f�'(x0)�+��

h2

2 ���f�"(x0)�+��h2�™(x0�,�-�h)
         avec  lim

h�@�0
    ™(x0 , h) = 0 .

Il en résulte que :

   
f(x0�+�h)�+��f(x0�-�h)�-�2f(x0)

h2    =  f "(x0) + [™(x0 , h) + ™0(x0 , - h)]   #@
h�@�0

     f "(x0) .

2a. f étant continue, ƒ est aussi continue et vérifie  ƒ(a) = ƒ(b) = 0 .
Par ailleurs, la dérivée au sens de Schwarz étant linéaire,  ƒ(") existe et est égale à :

ƒ(")(x) = f(")(x) + 2™ = 2™ > 0 .

Si ƒ admet un extremum positif strictement sur [a , b], il est atteint par un point  x0 ‘ ]a , b[  puisque ƒ est

continue sur [a , b]. Par ailleurs, pour  h > 0  assez petit, on aurait :

ƒ(x0 + h)  ≤  ƒ(x0)   ,   ƒ(x0�-�h)�≤�ƒ(x0)

et donc, pour  h > 0  assez petit :

ƒ(x0�+�h)�+��ƒ(x0�-�h)�-�2ƒ(x0)
h2      ≤   0

et donc aussi  ƒ(")(x0) ≤ 0 , ce qui est absurde.

2b. Il résulte de 2a. que, pour tout  x ‘ [a , b] , ƒ(x) ≤ 0 , i.e. :

f(x) - f(a) -  
f(b)�-�f(a)

b�-�a   (x - a)   ≤  ™(x - a)(b - x)   ,   ◊™ > 0

i.e.   f(x) - f(a) -  
f(b)�-�f(a)

b�-�a   (x - a)   ≤  0   ,   ◊x ‘ [a , b]  (faire tendre ™ vers 0) .

De même, en considérant la fonction  ƒ(x) = f(x) - f(a) -  
f(b)�-�f(a)

b�-�a   (x - a)  + ™(x - a)(b - x) sur [a�,�b],

on a :  ¥(")(x) = - 2™ < 0  et ne peut admettre de minimum strictement négatif sur   [a , b]  et donc,
◊x ‘ [a , b] ,  ¥(x) ≥ 0 ,  i.e. :

f(x) - f(a) -  
f(b)�-�f(a)

b�-�a   (x - a)   ≥  ™(a - x)(b - x)   ,   ◊™ > 0

i.e. f(x) - f(a) -  
f(b)�-�f(a)

b�-�a   (x - a)   ≥  0   ,   ◊x ‘ [a , b] .

Finalement, on a :  ◊x ‘ [a , b]  ,  f(x) = f(a) +  
f(b)�-�f(a)

b�-�a    (x - a)   et f est affine.

3a. Puisque la série [an cos nx + bn sin nx] converge simplement sur È, il résulte du I1. que les suites (an)
et (bn) tendent vers 0 et donc sont bornées par  M ≥ 0.

Par suite, la série 
 



 



�
1
n2�(an�cos�nx�+��bn�sin�nx)  

n≥1
  converge normalement sur È car :

◊x ‘ È ,   
1
n2 (an cos nx +  bn sin nx) … ≤   

2M
n2     .

Chaque fonction  x ò@ 
1
n2 (an cos nx +  bn sin nx) étant continue sur È, la somme

 F(x)  =  -  ∑
n�=�1

+�&
�    

1
n2 (an cos nx +  bn sin nx)  est continue sur È.
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3b. Notons   S0(x) = 0  et  Sn(x) = ∑
k�=�1

n
  (ak cos kx +  bk sin kx)  . On a :

fl(x , h)  =  
F(x�+�h)�+�F(x�-�h)�-�2F(x)

h2

       = ∑
n�=�1

+�&
� - 

1
n2�h2  [an cos (nx + nh) + bn sin (nx + nh)+ an cos(nx - nh) + bn sin(nx - nh)

- 2an cos nx - 2bn sin nx]

i.e.

fl(x , h)   =  -  ∑
n�=�1

+�&
�   

1
n2�h2  [2an cos nx (cos nh - 1) +  2bn sin nx . (cos nh - 1)]

fl(x , h)   =  -  ∑
n�=�1

+�&
�   (an cos nx +  bn sin nx)  . 2(cos nh - 1)  

1
n2�h2

et   
2

n2�h2  (cos nh - 1)  = - 4  sin2 
 



 



�
nh
2 �    

1
n2�h2    =  u(nh).

2c. On peut écrire (transformation d'Abel) :

fl(x , h) = ∑
n�=�1

+�&
�  (an cos nx +  bn sin nx)  u(nh)  = ∑

n�=�1

+�&
�  (Sn(x) -  Sn-1(x))  u(nh)

      = ∑
n�=�1

+�&,
   Sn(x) u(nh) - ∑

n�=�0

+�&
�   Sn(x) u((n + 1)h) = ∑

n�=�0

+�&
�    Sn(x) [u(nh) - u((n + 1)h)]

chacune des séries [Sn(x) u(nh)] et [Sn(x) u((n+ 1)h)] étant convergente (en  1/n2).

Par ailleurs, la série [u(nh) - u(n + 1)h)] converge  et a pour somme :

 ∑
n�=�0

+�&
�   [u(nh) - u((n + 1)h)] =  u(0) = 1  (u(nh) @ 0  lorsque n @ + &)

et donc  fl(x , h) - f(x) =  ∑
n�=�0

+�&
�    [Sn(x) - f(x)]  [u(nh) - u((n + 1)h)] .

2d. (i) Par hypothèse, on sait que Sn(x) tend vers f(x) quand n tend vers + & .
Par suite, pour  ™ > 0 donné, il existe  N = N(™ , x) ‘ ˙  tel que  n ≥ ˙ ¶ …Sn(x) - f(x)… ≤ ™ .
Par ailleurs, pour chaque  n ‘ ˙  fixé, [u(nh) - u((n + 1)h)]  tend vers  u(0) - u(0) = 0  quand h tend vers 0
puisque u est continue en 0 (u(0) = 1).

Et, d'autre part, en écrivant que  u(nh) - u((n + 1)h) =  ∫
���������nh

(n+1)h
      u'(t) dt  et en remarquant que

u'(t) =  
8
t2   

 



 



-��
1
t ���sin2��

 



 



�
t
2� ��+��

1
2���sin��

t
2��.��cos���

t
2�

et donc, pour  t ≥ 1 , …u'(t)… ≤  
16
t2    , on obtient que :

∑
n�=�N�+�1

+�&
      …u(nh) - u((n + 1)h)… ≤ ∫

���������Nh

+�&
       …u'(t)… dt  ≤  M  = ∫

�����0

+�&
     …u'(t)… dt  <  + &

car u est C1 au voisinage de 0 (même analytique).

Finalement, on a :

…fl(x , h) - f(x)…  ≤  ∑
n�=�0

N
    …Sn(x)[u(nh) - u((n + 1)h)]… +  M™
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et si h tend vers 0, la somme \i\su(n = 0,N, )   tend aussi vers 0 et donc pour  …h… ≤  h0(™) , on a :

…fl(x , h) - f(x)…  ≤  ™(M + 1)

ce qui prouve que   limfl(x�,�h)�
h�@�0�,�h�≠�0

   existe et vaut f(x).

Remarque : En fait, la preuve précédente est une variante du théorème d'Abel classique, dont voici une
variante de la preuve à l'aide du théorème de convergence dominée.

Pour (h , t) ‘ È
2
+   , posons :

g(h , t) = 
 

 0�������������������������������������������������si��h�=�0
�Sn(x)�-�f(x) avec�n�=�E(t/h)�pour  h�≠�0

où E(y) désigne la partie entière de y .

On a alors :

Sn(x) - f(x)[u(nh) - u((n + 1)h)] = ∫
�����nh

(n+1)h
         g(h , t) u'(t) dt .

Comme la suite (Sn(x) - f(x))n  converge vers 0, elle est bornée. Il existe donc  M ‘ È+  tel que :

◊(h , t) ‘ È
2
+   ,  …g(h , t)… ≤  M .

De plus, compte-tenu de l'expression de u'(t) , l'intégrale ∫
�����0

+�&
     …u'(t)… dt   est convergente.

Enfin, l'application  h ò@ g(h , t)  est continue en 0, puisque la suite (Sn(x) - f(x)) tend vers 0 lorsque n
tend vers + & .

Ainsi, on déduit par le théorème de convergence dominée que :

h ò@ ∫
�����0

+�&
     g(h , t) u'(t) dt = fl(x , h) - f(x)  est continue en 0,

i.e. :  lim
h�@�0

   [fl(x , h) - f(x)] = 0 .

(ii) Considérons maintenant   G(x) : = ∫
�����0

x
  (x - t)  f(t) dt  , pour  x ‘ È .

G a un sens car f est, par hypothèse, continue sur È. De plus, G est dérivable et on a :

◊x ‘ È   ,   G'(x)  = ∫
�����0

x
    f(t) dt .

G' est donc C1 et  G"(x) = f(x)  pour tout  x ‘ È .

(iii) Ainsi, la fonction  x ò@ (F - G)(x)  est continue et admet une dérivée au sens de Schwarz nulle et, de
II.2.b , est une fonction affine sur È :  il existe  å , ∫ ‘ È  tels que :

  ◊x ‘ È  ,  F(x) = åx + ∫ + ∫
�����0

x
    (x - t)  f(t) dt .

F est donc de classe C2 sur È et  F" = f .

2e. La série définissant F étant uniformément (normalement) convergente sur È, il en résulte que :

-  
1
π ∫

�����-�π

π
     F(x) cos nx dx  =  

1
n2    an n ≥ 1

et -  
1
π ∫

�����-�π

π
     F(x) sin nx dx  =  

1
n2    bn n ≥ 1.

F étant de classe C2, en intégrant par parties, il vient :
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1
n2    an  =  -  

1
π ∫

�����-�π

π
     F(x) cos nx dx =  -  

1
π  

 




 




��
1
n����sin�nx�.�F(x)�… ��

π

-�π
  - ∫

     -�π

π
     F�'(x)���

sin�nx
n ��dx�

=  
1

πn ∫
�����-�π

π
     F '(x)  sin nx dx

et, puisque  F '(- π) = F '(π) :

  
1

πn ∫
�����-�π

π
     F '(x)  sin nx dx =  

1
πn2 ∫

�����-�π

π
     F "(x)  cos nx dx  =  

1
πn2 ∫

�����-�π

π
     f(x)  cos nx dx

i.e.  an  =  
1
π ∫

�����-�π

π,
     f(x) cos nx dx  ,  n ≥ 1 .

De même,  bn  =  
1
π ∫

�����-�π

π
     f(x) sin nx dx  ,  n ≥ 1 .
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Partie III

1. Soit f
���õ

  le prolongement impair et 2π-périodique de f à È.

Comme  f(0) = f(π) = 0 , f
���õ

  est continue sur È.
Soit  x ‘ [0 , + &[ . Il existe un entier k  ≥ 0  tel que  kπ ≤ x < (k + 1)π .
Posons  y = x - kπ ‘ [0 , π] . On a  sin(nx) = (-1)nk sin(ny).

❁ Si  k = 2p  est pair, alors  sin(nx) = sin(ny)  et donc la série  ∑
1

+�&
�   bn sin(nx)  converge et

    ∑
n�=�1

+�&
�   bn sin(nx) = f(y) = f(x - 2pπ) = f

���õ
(x)  .

❁ Si  k = 2p + 1  est impair, alors  sin(nx) = (-1)n sin(ny) = - sin n(π - y)  et donc la série

  ∑
1

+�&
�   bn sin(nx)  converge et  ∑

n�=�1

+�&
�   bn sin(nx) =  - f(π - y)   ,   π - y ‘ [0 , π]

       =  - f((2p + 2) π - x)  =  - f
���õ

(- x)  = f
���õ

(x)  .

De même pour  x ‘ ]- & , 0] , la série ∑
1

+�&
�   bn sin(nx)  converge et vaut  - f

���õ
(- x)  = f

���õ
(x)  , d'où le résultat.

Les coefficients de Fourier de f
���õ

  sont   
1
π ∫

�����õ�π

π
    f

���õ
(x)  cos(nx) dx = 0  puisque f

���õ
  est impaire et

 
1
π ∫

�����-�π

π
    f

���õ
(x)  sin(nx) dx =   

2
π ∫

�����0

π
     f(x) sin(nx) dx  pour  n ‘ ˙ .

Et d'après le §II, il résulte que    
1
π ∫

�����-�π

π
    f

���õ
(x)  sin(nx) dx = bn  ,

i.e. :   ◊n ‘ ˙*   ,      
2
π ∫

�����0

π
     f(x) sin(nx) dx = bn .

2. On a :

J((1 - t)u +  tv)  =  
1
2 ∫

�����0

π
    [((1 - t)u' +  tv')2 + ((1 - t)u +  tv)2] dx - ∫

�����0

π
    f[(1 - t)u +  tv] dx

=  
1
2 ∫

�����0

π
   { }(1�-�t)2�u'�2�+��t2�v'�2�+��2t(1�-�t)u'�v'�+�(1�-�t)2�u2�+��t2�v2�+��2t(1�-�t)uv�   dx

   - (1 - t) ∫
�����0

π
    fu dx - t ∫

�����0

π
    fv dx .

De même :

(1 - t) J(u) + t J(v) =  
1�-�t

2 ∫
�����0

π
  (u' 2 + u2) dx - (1 - t) ∫

�����0

π
    fu dx +  

t
2 ∫

�����0

π
  (v' 2+ v2) dx - t ∫

�����0

π
    fv dx

et donc :

J((1 - t)u +  tv) - (1 - t) J(u) - t J(v)  =  
1
2  (1 - t) ∫

�����0

π
   ((1 - t) - 1) u' 2 +  

1
2   t ∫

�����0

π
   (t - 1)  v' 2

+  
1
2  (1 - t) ∫

�����0

π
   ((1 - t) - 1) u2 +  

1
2   t ∫

�����0

π
   (t - 1)  v2

+  
2
2    t(1 - t) ∫

�����0

π
   (u' v' + uv)
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      =   -   
t(1�-�t)

2 ∫
�����0

π
     u' 2 +  v' 2 +  u2 +  v2 - 2 u' v' - 2 uv

      =   -   
t(1�-�t)

2 ∫
�����0

π
     [(u' - v' )2 +  (u -  v)2]  dx .

3. Si  u1  et  u2  sont solutions du problème (P) alors en prenant  t =  
1
2   ,  u = u1  et  v = u2 , il vient :

J 
 



 



��
1
2���(u1�+��u2)�    +   

1
8 ∫

�����0

π
    [(u'1 - u'2)2 +  (u1

 -  u2)2]  dx  =  
1
2  (J(u1) +  J(u2))

  ≤   
1
2    2J 

 



 



��
1
2���(u1�+��u2)�   =  J 

 



 



��
u1�+��u2

2 �

car   
1
2  (u1 +  u2)  ‘  E0  et donc ∫

�����0

π
    [(u'1 - u'2)2 +  (u1

 -  u2)2]  dx  =  0 .

Et, comme  u1
 et  u2  sont continues sur [0 , π] , ∫

�����0

π
   (u1 - u2) 2 dx = 0  ¶  u1 Ñ u2 .

4a. Pour  u,v ‘ E0 , on peut écrire :  J((1 - t)u +  tv) = J(u +  t(v - u))  et, en posant  w = v - u , il vient de la

question 2 :

J(u +  tw)  =  J(u) +  t J(w +  u) - t J(u) -  
t(1�-�t)

2 ∫
�����0

π
    (w' 2 +  w2)  dx

=  J(u) +  t 
 




 




�J(u�+��w)�-�J(u)�-��
1
2 ∫

�����0

π
   (w'�2�+��w2)�dx�    +   

t2

2 ∫
�����0

π
   (w' 2 +  w2)  dx

=  J(u) +  t 
 




 




�
1
2 ∫

�����0

π
   [(u'�+��w')�2�+��(u�+��w)2-�u'�2�-�u2�-�w'�2�-�w2]��- ∫

�����0

π
    fw�   +  

t2

2 ∫
�����0

π
  (w' 2 +  w2)  dx

=  J(u) +  t 
 




 




∫
�����0

π
   (u'�w'�+��uw)�- ∫

�����0

π
    fw�     +   

t2

2 ∫
�����0

π
   (w' 2 +  w2)  dx . cqfd

4b. On a :  u ‘ E0  est solution de (P) si et seulement si, pour tout  w ‘ E0 , et pour tout  t ‘ È :

J(u)  ≤  J(u +  tw)  =  J(u) + …

i.e. }◊t����‘�È,◊w��‘�E0      0  ≤   t 
 




 




∫
�����0

π
   (u'�w'�+��uw)�- ∫

�����0

π
    fw�     +   

t2

2 ∫
�����0

π
   (w' 2 +  w2)  dx

ce qui implique pour   t > 0 , ◊w ‘ E0 ,  0  ≤ ∫
�����0

π
    [(u' w' +  uw) - fw] dx +   

t
2 ∫

�����0

π
   (w' 2 +  w2)  dx ,    et en faisant

tendre t vers 0 :   0  ≤ ∫
�����0

π
    [u' w' +  uw - fw] dx  ,  ◊w ‘ E0 .

En changeant w en - w , cela implique que  ◊w ‘ E0 : ∫
�����0

π
   (u' w' +  uw)   = ∫

�����0

π
    fw    (P').

Réciproquement, si cette condition est réalisée, il résulte du calcul précédent que :

J(u +  tw) = J(u) +   
t2

2 ∫
�����0

π
   (w' 2 +  w2)  dx  ≥  J(u)  ,    ◊t�����‘�È,◊w��‘�E0����� .

5a. Soit  u ‘ E0  une solution de (P).
En prenant   v = sin nx , qui appartient à E0, dans (P'), il vient, pour tout entier  n ≥ 1 :

n ∫
�����0

π
     u' cos nx dx  + ∫

�����0

π
     u sin nx dx  = ∫

�����0

π
     f(x) sin nx dx

65



et, en intégrant par parties : ∫
�����0

π
     u' cos nx dx  =  u cos nx … ��

π
��

0
   +  n ∫

�����0

π
     u sin nx dx

d'où la relation : (n2 +  1) ∫
�����0

π
     u(x) sin(nx) dx  =  

π
2    bn

i.e. un =  
π
2 ∫

�����0

π
     u(x) sin(nx) dx  =  

bn
n2�+��1

   .

5b. u�õ(x)   a un sens pour tout  x ‘ È  car la série  ∑
1

&
   

bn
n2�+��1

    sin nx  est normalement convergente puisque

(bn)n est une suite de coefficients de Fourier, donc est bornée.

Par ailleurs, la fonction w(x) définie par   w(x) =  ∑
1

&
   

bn
n2(n2�+��1)

    sin(nx)  est de classe C2 (on peut dériver

deux fois terme à terme, les séries obtenues convergent normalement sur È) et on a :

◊x ‘ È   ,   w"(x)  =  -  ∑
1

&
   

bn
n2�+��1

    sin nx  =  - uõ(x)

et donc, puisque d'après le §II, la série  v(x) : =  ∑
1

&
   

bn
n2    sin nx   définit une fonction de classe C2 sur È telle

que :

 v"(x) = f
����õ

(x)  .

On a :   ◊x ‘ È  ,  - uõ "(x) +  uõ(x)  = f
����õ

(x)  .

Par ailleurs, on a bien  uõ(0)  =  uõ(π)  = 0 .

5c. Il est clair que  u = uõ …[0 , π]  , d'après la question précédente, vérifie :

(D)
 

 -�u"�+��u�=�f
u(0)�=�u(π)�=�0   .

5d. Montrons que u est solution de (P') : d'après (D), pour toute fonction  v ‘ E0 , il vient :

- ∫
�����0

π
     u" v  + ∫

�����0

π
     uv  = ∫

�����0

π
�    fv

et, en intégrant par parties,

 - ∫
�����0

π
     u" v dx   =  - 

 



 



��u'�v��… ��
π

0
�   - ∫

�����0

π
�����u'�v'�dx�    = ∫

�����0

π
     u' v' dx

et donc, pour tout  v ‘ E0 , ∫
�����0

π
     u' v' +  uv  = ∫

�����0

π
     fv dx  ,  i.e. : (P') .

Et d'après 4b. , u est solution de (P).

… __________________ …
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